Fachhochschule Dortmund

University of Applied Sciences and Arts

Smart Energy IoT Applications - Services and Security Aspects

Institute of Communications Technology and Signal Processing Prof. Dr. –Ing. Ingo Kunold , M.Eng. Marco Niemeyer www.ikt-dortmund.de

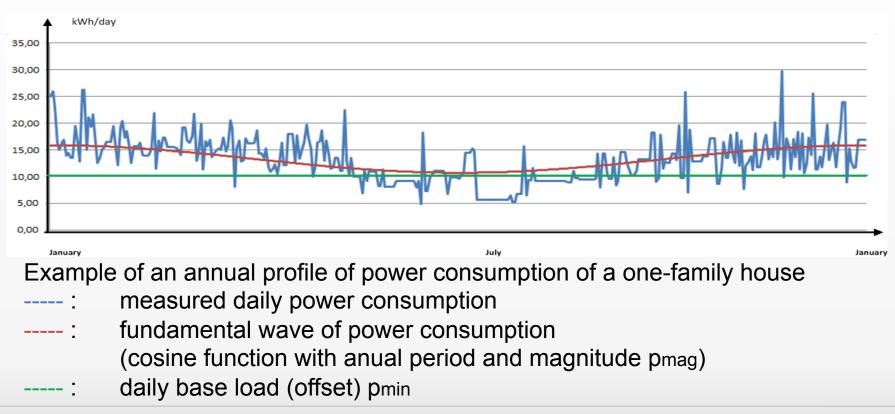
Internet Security Days on 17. September 2015 Brühl, Germany

20

Sep.

Internet of Things units installed base by category (in billions) worldwide* 30 A forecast expects in 2020 over 25 billion 25 connected "things" 20 Business Important tasks of the Internet 15 Consumer of Things are 10 Automotive Smart Building and 5 Smart Energy Services with \rightarrow M2M/M2H communication \rightarrow Deployed on 2013 2014 2015 2020 embedded hardware platforms

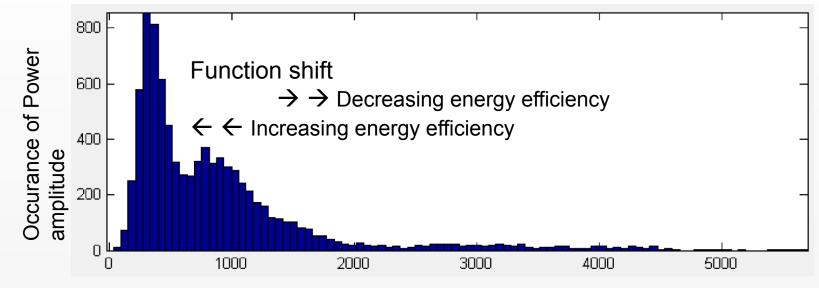
Reference: Gartner, Inc. November 2014


*Excluding PCs, tablets and smartphones

Todays power supply with regenerative systems is more volatile and the price for power depends on its availability.

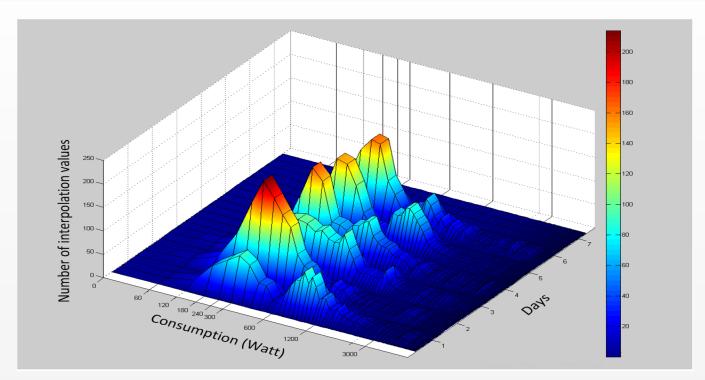
- **Power suppliers** need to define new time depended energy tariffs and the corresponding billing.
- **Power suppliers and producers** are working of concepts for load balancing in volatile power networks.
- **Power consumers** are interested to their detailed power consumption behavior and in their potential to save energy without loss of comfort.
- Housebreakers are interested to learn at what time people are on holidays or at work.
- **Spies** are interested in any kind of personal data to get vitreous people.

Detection of individual classification data over an anual period



Internet Security Days on 17. September 2015 Brühl, Germany

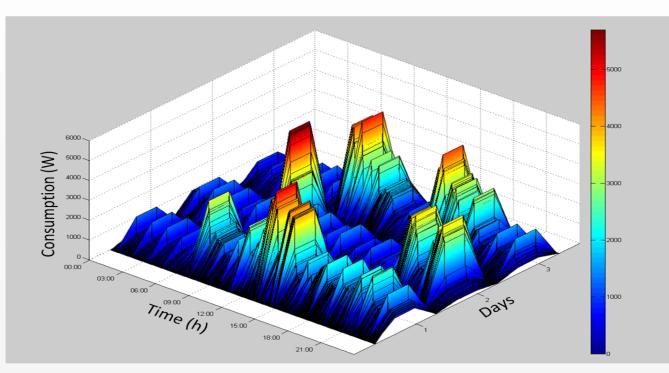
Detection of commonly used power consumption (devices)



Power amplitude (Watt)

Relation of different power amplitudes in a weekly observation interval

Commonly used power consumption during a week



Comparing frequency scale view

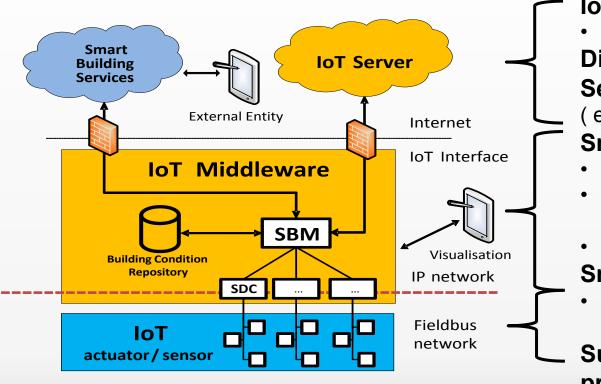
Internet Security Days on 17. September 2015 Brühl, Germany

Daily power load profiles of 3 different typical days

Comparison of daily load profiles

Internet Security Days on 17. September 2015 Brühl, Germany

General security threats from the internet are:


- The system can be entered or taken over (Hacking).
- Sensitive data from the systen can be stolen or spied out.
- Access to the system can be prevented or sensitive data can be deleted.
- Data can be modified or falsified.
- To get access to the system a false identitiy can be pretended.

Primary goals of internet security are to make sure the

- **Confidentiality** \rightarrow Information is only for authorized entities available
- Integrity → means accuracy, consistency and completeness of data
- Availability \rightarrow Information is available when it is needed

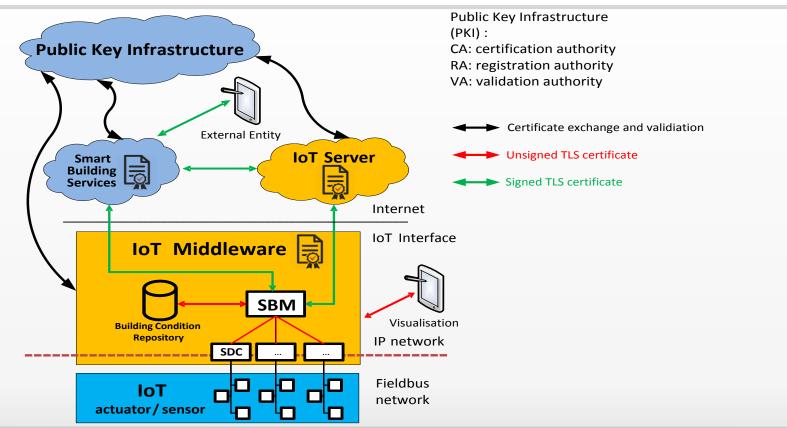
A Smart building system (SBS) approach - IoT system architecture

IoT Server as backend system

Long term status/data storage

Different Smart Building Services

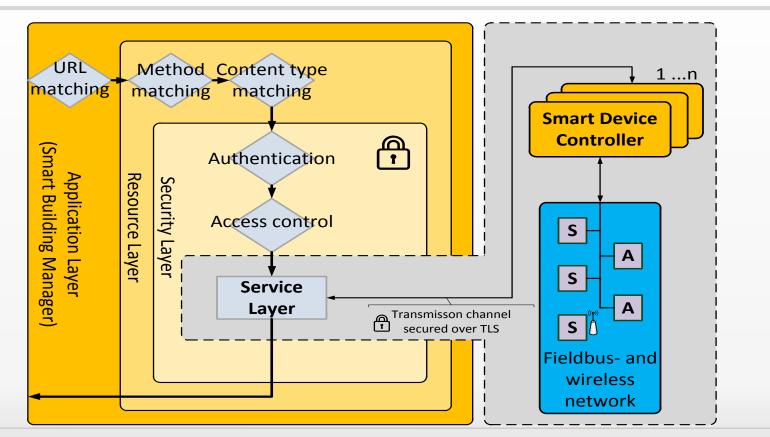
(e.g. control/supervision/prediction)


Smart Building Manager SBM

- Proxy features
- Providing near real-time status/data exchange
- Local smart service engine
 Smart Device Controller SDC
- Mapping of fieldbus protocols to a uniform data structure

Support of different fieldbus protocols

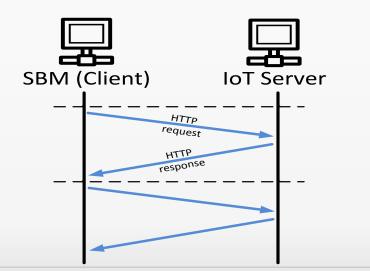
A Smart building system (SBS) approach - IoT security architecture



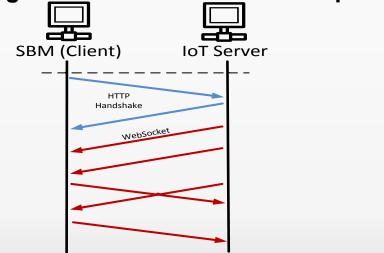
Internet Security Days on 17. September 2015 Brühl, Germany

Sep. 2015 - © IKT FH Dortmund

Processing a HTTP request on the SBM



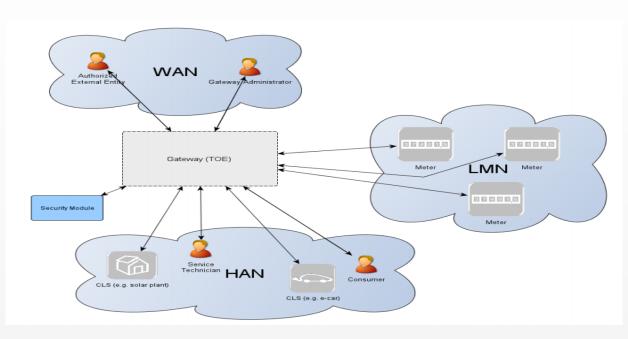
Standard communication procedures using Transport Layer Security TLS


RESTful Web Services

REST is a common architectural style and widely used for webbased M2M communication

WebSocket technology

With the WebSocket protocol an event based messaging can be realised over a single TCP channel. The data is exchanged <u>bi-directional and full-duplex</u>.


Dortmund

Ē

Sep. 2015

Security in a smart metering system

Logical Interfaces of the Smart Meter Gateway

The German Federal Office for Information Security (BSI) has defined the Protection Profile BSI-CC-PP-0073 along with the technical guideline TR-03109. This defines the requirements for a Smart Meter Gateway (SMGW) and its interaction with other components in a smart environment.

BSI TR-02102-2 defines the use of Transport Layer Security (TLS)

The approach is to minimize weak points of potential attacks

- \rightarrow Generally every communication channel must be secured by TLS
- → Only data traffic between a SMGW and authorized external entities (e.g. smart energy services)
- → Mutual authentication (server/client) to prevent Man-in-the-middle attacks

Prevention of entering or takeover of a system (Hacking):

- An entity authenticates itself to the system
- With a mutual authentication with certificates for every instance (server/ client) the Man-in-the-middle attacks can be prevented
- An entity has only access to the system with a valid, randomly generated session token

Prevention of spy out or steal data

- The transmission channel is encrypted by Transport Layer Security (TLS)
- Unauthorized acccess to the system is prevented by use of a role based Acess-Control-List (ACL)

References

Ruhr Master School

- M. Kuller, I. Kunold, H. Hoffmann "Middleware- und Visualisierungskonzepte für Smart-Energy-Systeme" aus Smart Energy 2013- Wie smart ist Deutschland im europäischen Kontext. vwh | Verlag Werner Hülsbusch, ISBN: 978-3-86488-055-1, November 2013, pp. 42 – 55.
- [2] BMWi Federal Ministry of Economics and Technology, "GUDED AB," 2013-2016. [Online]. Available: http://-www.guided-ab.de/-
- [3] BSI Federal Office for Information Security, "Protection profile for the gateway of a smart metering system," 2014.

[Online]. Available: https://-www.bsi.bund.de

[4] BSI - Federal Office for Information Security, "BSI TR-03109," 2012. [Online]. Available: https://-www.bsi.bund.de

References

- [5] BSI Federal Office for Information Security, "BSI TR-02102-2" 2014.[Online]. Available: https://-www.bsi.bund.de
- [6] T. Garn, "Realization of a signal processing system for energy efficiency analysis of smart metering data with Matlab and Java," Master's thesis, University of Applied Sciences and Arts Dortmund, Germany, 2011.
- [7] M. Niemeyer, K. Henneböhle, M. Kuller, I. Kunold, "Security requirements of IoT-based smart buildings using RESTful Web Services," in 30th International Kandó Conference on 20th November 2014. Budapest, Republic of Hungary: Óbudai University, November 2014.

Thank you for your attention.

Internet Security Days on 17. September 2015 Brühl, Germany

Sep