PHYSEC:

The key technology for the IoT

Internet Security Days 17.09.2015, Bruehl

Benedikt Driessen, Heiko Koepke, Christian Zenger

Background

Dr.-Ing. Benedikt DriessenSecurity Expert

M.Sc. Christian Zenger Leader and inventor

Prof. Dr.-Ing. Christof PaarMentor and experienced founder

Dipl.-Ök. Heiko Koepke Economist

Background

Dr.-Ing. Benedikt DriessenSecurity Expert

M.Sc. Christian Zenger Leader and inventor

Prof. Dr.-Ing. Christof Paar Mentor and experienced founder

Dipl.-Ök. Heiko Koepke Economist

BMWi "EXIST Forschungstransfer"

October 2015 - March 2017

Total funding: 650.000 €

Goal: Product

Background

Dr.-Ing. Benedikt DriessenSecurity Expert

M.Sc. Christian Zenger Leader and inventor

Prof. Dr.-Ing. Christof PaarMentor and experienced founder

Dipl.-Ök. Heiko Koepke Economist

BMWi "EXIST Forschungstransfer"

October 2015 – March 2017

Total funding: 650.000 €

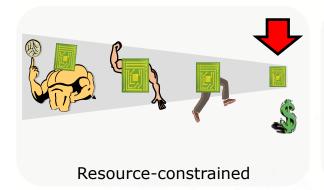
Goal: Product

BMBF project "PROPHYLAXE"

- March 2013 August 2015
- Total funding: 3,5 Mio.
- First demonstrator

Summary

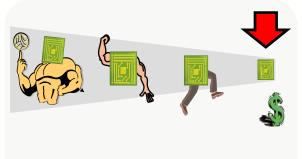
Mission of PHYSEC: Simple and strong protection of data for "smart home", "industry 4.0" and the "internet of things"


- Sensors and actuators in the "internet of things" measure and influence our daily lives
- Protection of data via cryptography requires trust in cryptographic keys
- Our technology solves this key problem for wirelessly communicating embedded devices

Challenges for the security of communication links in the IoT

 3.4×10^{38}

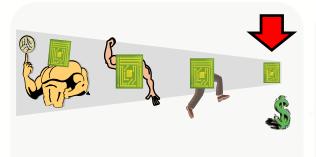
Huge number of things



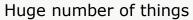
 3.4×10^{38}

Huge number of things

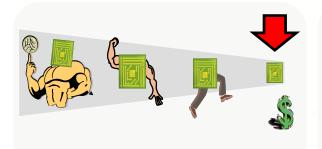
 3.4×10^{38}


Resource-constrained

Huge number of things


Energy-constrained


Resource-constrained

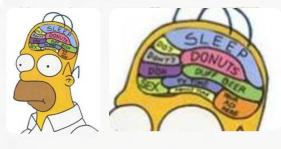


No comfortable user interface

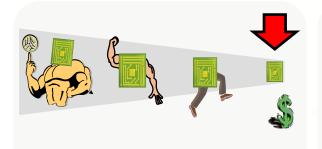
Energy-constrained

Resource-constrained

Huge number of things



No comfortable user interface



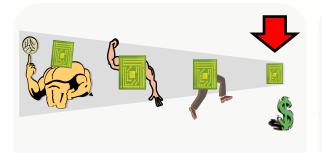
Energy-constrained

And the worst... users!



Resource-constrained

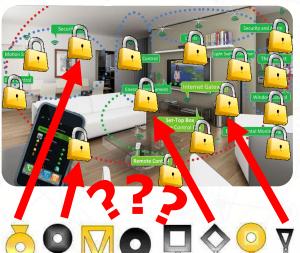
Huge number of things


No comfortable user interface

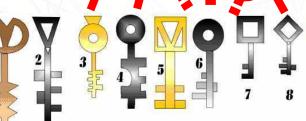
And the worst... users!

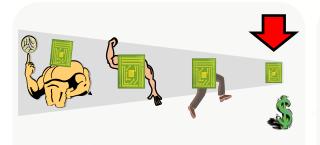
Energy-constrained

Resource-constrained

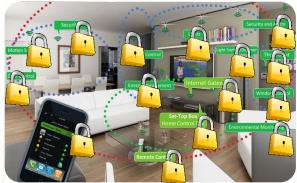

Huge number of things

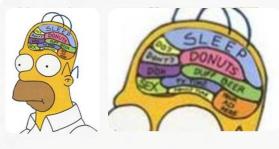
No comfortable user interface




Energy-constrained

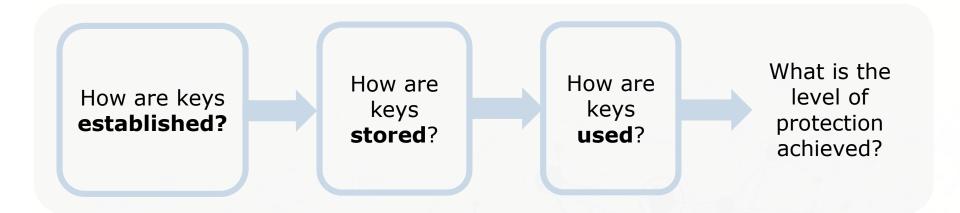
Resource-constrained


Huge number of things and keys



No comfortable user interface

Energy-constrained



And the worst... users!

- Easy-to-use and cost-efficient security is required
- Conventional approaches have serious shortcomings

Cryptographic keys as trust anchor

Keys as trust anchor

- Trust in a cryptographic system starts with trust in the cryptographic key(s)
- Protection is the result of correct establishment, storage and usage

Challenges for the secure establishment of keys

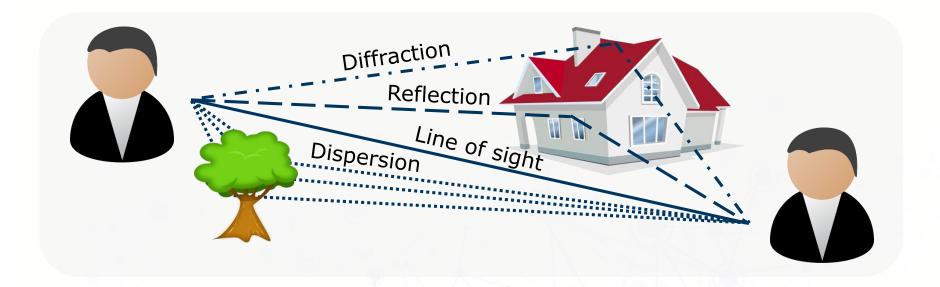
- Programming of keys during manufacturing
 - Most simple form of key management
 - Manufacturing processes have to be secured
 - Attacks scale extremely good
 - No flexibility in case of attack
- O Dynamic key management (e.g., based on a PKI)
 - More flexibility
 - High complexity in implementation and infrastructure
 - Higher resource usage on devices
 - High cost for infrastructure of HSMs and servers

Challenges for the secure storage of keys

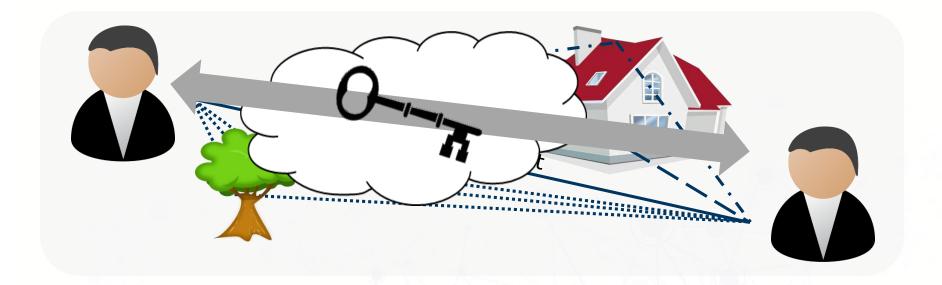
- Obfuscation of stored keys and software-based approaches typically fail
- Security hardware can significantly harden a system against attacks
 - Increased cost
 - Increased complexity and integration efforts


Challenges for the secure usage of keys

- Attacks against cryptographic implementations are standard
 - Attacks are complex but effective
 - Countermeasures exist but require deep expertise
- Techniques for attacks against crypto algorithms get better every day
 - Choice of algorithms not always easy
 - Proprietory algorithms are in danger


The basic idea

Idea: Evaluate the wireless channel (1/3)


- Alice and Bob communicate via a wireless channel
- A channel has properties that can be measured
 - If Alice and Bob measure simultanously, the measurements will be correlated

Idea: Evaluate the wireless channel (2/3)

- Wireless signals do not only propagate along the line of sight
- Diffraction, reflection and dispersion are dependent on the surroundings and thus highly variable
 - High entropy of measurements

Idea: Evaluate the wireless channel (2/3)

- Wireless signals do not only propagate along the line of sight
- Diffraction, reflection and dispersion are dependent on the surroundings and thus highly variable
 - High entropy of measurements

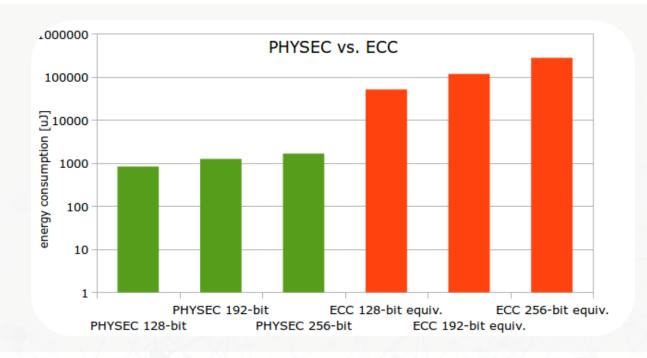
Idea: Evaluate the wireless channel (3/3)

Measurements decorrelate quickly

- Depends on surroundings and frequency
- WiFi at 2.4GHz: $d_{AO} > 7$ cm, $d_{BO} > 7$ cm

Applications and benefits

Principle 1: Authentication through proximity


- Establishment of keys between gateway and sensors with the help of a trusted authenticator device (e.g., smartphone)
- Transfer of trust by placing authenticator next to new device
 - Proximity implies correlated measurements

Principle 2: Key (re-)generation

- Cryptographic keys derived from channel
- Continuously changing keys
 - Every communication produces new measurements
- Attacks on storage and usage of keys less attractive and effective
 - Individual keys make attacks unscalable
 - Keys only used for a limited period
 - Statistical attacks require huge amounts of data with same key

High security for low energy

- PHYSEC requires between one and two orders of magnitude less energy than ECC
 - Alle klassische Verfahren brauchen zudem zusätzlich einen guten RNG

Status and perspective

- Fully functional demonstrator
 - 700Mhz ARM
 - WLAN IEEE 802.11n, 2.4GHz
 - Modification of OS kernel
- Further implementations
 - ARM Cortex M3 (32 bit)
 - MSP 430 (16 bit)
 - Intel 8051 (8 bit)

Conclusion

- Advantages of the technology
 - Saves energy and thus ideal for embedded devices
 - High security without need for further measures
 - Intuitive usage for end customer

PHYSEC is looking for collaboration partners

- Use cases
- Prototypical integration

