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Overview

▪ DNS security in a nutshell

▪ TCP does not work

▪ New cache poisoning vector: injections over DNS

▪ Validation of DNS inputs: who and where?

▪ Injection attacks against applications and routers

▪ DNSSEC is vulnerable

▪ Conclusions
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Domain Name System (DNS)

▪ Used to lookup resources and as a 
platform for applications

▪ Resolvers perform lookup for applications or users

▪ Stub resolvers, forwarders, recursive resolvers

▪ Nameservers are hierarchical distributed 
database of resources
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DNS cache poisoning

▪ Redirect victims to malicious hosts

▪ DNS request contains random values echoed 
in DNS response

▪ Hijack BGP prefix to intercept DNS request 

▪ Side channels to hit the request values

▪ Fragmentation to inject bogus content

▪ Successful cache poisoning attacks are challenging, 
require lots of work [CCS20, CCS21, Usenix21, Usenix22,…] 

Recommended countermeasures:
→ DNSSEC validation of signed 

records against on-path
→ TCP against off-path
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DNS cache poisoning via fragmentation

▪ Attack vector published in 2011 at IEEE CNS
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DNS over TCP considered vulnerable

▪ TCP fragmentation at the source: 393 additional vulnerable 
domains out of 100K Alexa 

▪ TCP fragmentation at intermediate routers: > 600 routers 
in > 50 ASes

▪ The fragments with TCP segments can be reduced to much lower sizes

▪ Much more effective attacks

DNS responses are vulnerable to similar injection attacks like over UDP
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Well known: User inputs are not trusted! 
Need to be sanitized/validated.

New: Attacks via inputs from other (trusted) sources

https://XKCD.com

New attack vector: Injections over DNS
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“Be strict when sending and tolerant when receiving”
[RFC1958]

▪ DNS follows the end-to-end principle [RFC3597, RFC1035]

▪ Intermediate hosts (resolvers) should only interpret the data they need

▪ Everything else forwarded unchanged

▪ Allows easy adoption of new applications over DNS

▪ We show DNS transparency can be 
exploited for injection attacks
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Components in DNS resolution chain

1. Nameserver provides records in line-format

▪ Record data can contain any value

▪ Line format: List of labels, length of each label is prepended

3. Resolvers

▪ Treat DNS record data transparently

4. Stub-resolvers / DNS-library

▪ Translates the line-format DNS data into textual form

▪ Text format: Labels are separated with period (.)

5. Application

▪ Uses the data

Application triggers a query…
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Handling in DNS resolvers

▪ DNS Resolvers handle DNS data transparently

▪ 96% of the tested resolvers (>1.3M) are standard 
compliant

▪ What happens if 

▪ Labels contain non-printable chars (i.e., NULL)

▪ Labels contain periods (.) ?

▪ Resolvers misinterpret period-in-label, NULL
▪ www\.victim.com → www.victim.com

▪ victim.com\000.attacker.com → victim.com

Resolvers tested:

In lab:                                       
7 recursive, 4 forwarders

Public:                                            
11 public resolvers

In-the-wild:                    
1.3 million open resolvers 
from censys dataset
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Cache poisoning via injection

▪ Trigger query for attacker.com, return  victim.com\000.attacker.com 

▪ Record in bailiwick: it is a subdomain of the domain in query attacker.com

▪ Record is processed and cached as victim.com IN A 6.6.6.6

▪ Cannot be prevented with DNSSEC 

▪ Misinterpretation happens after DNSSEC validation

attacker.com                IN CNAME victim.com\000.attacker.com 
victim.com\000.attacker.com IN A     6.6.6.6           

victim.com                  IN A     1.1.1.1

100K open resolvers 
in the Internet 
vulnerable to cache-
poisoning due to 
misinterpretation!
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Handling in stub resolvers

▪ Domain names vs. hostnames [RFC952]

▪ Domain names can contain any data

▪ Resolvers do not filter

▪ Hostnames can only contain [a-z0-9-.]

▪ POSIX specifies that libc resolver functions 
operate on hostnames not domain names

▪ Stub-resolvers should validate!

▪ But:

▪ Only 1 out of 10 validates

▪ 7 out of 10 misinterpret zero or period Stub resolver test results (PTR)



14

Handling in applications

▪ DNS data seems to come from the OS 
→ developers tend to trust it

▪ Application developers are not DNS developers

▪ Not aware that DNS records can contain any value

▪ Validation would be challenging to implement…
detect decoding errors: a\.b.com or a.b.com

▪ Vulnerabile to attacks: 
XSS, Stack overflow, Buffer Overflow, Config injection, …

Applications do not validate DNS records

None of the applications validate!
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Injection attacks against applications

▪ Eduroam: international system for user
identification in research institutions

▪ Vulnerability in Dynamic Peer Discovery of 
Eduroam

▪ The developers and DFN are notified

▪ CVEs registered and patches available

→ Important: need to be installed manually

▪ XSS in OpenWRT

▪ ANSI escape code injection into ping
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Injection attacks against residential routers

▪ Setup

▪ 15 (43%) routers vulnerable 

▪ 10 routers vulnerable to injections

▪ 11 vulnerable to derandomization
(TXID, ports)

▪ 5 vulnerable to DNSSEC disabling

▪ 11 routers not standard compliant

▪ E.g., no support of TCP
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White-box analysis of firmware

▪ Special character misinterpretation

▪ Vulnerable decoder implementations

▪ Vulnerable cache implementations
▪ Qname-to-address map

▪ Qname-to-packet map

▪ TXID forwarding: forwarders extract min info from
packets (TXID and qname) and ignore the rest

▪ Do not change the TXID → forward as is

▪ No source port randomization

▪ Some implementations set static port

▪ Some chose with rand() C function: PRG is seeded with srand(time(NULL))
current UNIX timestamp in seconds from January 1, 1970 

▪ Should produce random time, but, the time is reset to January 1, 1970 
after every reboot
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Vulnerable routers in the wild with ad network

▪ Create fingerprints of routers

▪ Images routers use

▪ Default addresses from factory settings

▪ Special domain names used by vendors to redirect to
web interface

▪ We embed a js on our website

▪ We identified web interface in 973 clients

▪ We found 929 vulnerable routers
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Keep it Simple Stupid: also relevant for routers

▪ Many residential routers implement DNS forwarders

▪ But, do not implement most functionality and security features of DNS

▪ Remove DNS from routers: implement forwarding as a simple NAT rule

▪ Resolver of ISP eliminates performance penalty

▪ The resolvers of the ISP are in proximity

▪ The caches also include records cached on routers
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DNSSEC is vulnerable and can be disabled

▪ Multiple algorithms were standardised for DNSSEC

▪ Most zones are signed with RSA, some with ECDSA

▪ Most resolvers support RSA and ECDSA

▪ Sign zones with new algorithms

▪ Only unsupported algorithms → SERVFAIL or no validation

▪ Supported and unsupported algorith→ in some cases leads to vulnerabilities (even with
public DNS providers)

▪ Countermeasures can lead to failures, e.g., during key rollover
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Conclusions

▪ Misinterpretations and wrong processing all the way

▪ Who should validate?

▪ Applications do not know what should be the correct decoding

▪ If DNS resolvers start validating: 
(1) Will lose transparency
(2) Cannot know what is valid in advance

▪ Routers are mostly vulnerable

▪ Mitigations:

▪ Resolvers: Test your resolver with https://xdi-attack.net/

▪ Fix vulnerabilities: CVE-2021-20314, CVE-2021-32019, CVE-2021-2432, CVE-2021-32642, 
CVE-2021-33195, CVE-2021-3672, CVE-2021-22931, CVE-2021-43523,…

▪ Our works shows the complexity and challenges of content validation for zero trust security

Challenges with validation:
- Which inputs are illegal and 

should be filtered? 
- What happens with new inputs 

that may be discovered? 
- How to update all resolvers in 

the world to support this?
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Vielen 
Dank!

Thank you very 
much!

Merci beaucoup!
תודה רבה!

Dziękuję!

Dank je wel!

çok
teşekkürler

zor spas
Grazie mille!

Muchas gracias


