
1

DNS Security

Prof. Dr. Haya Shulman

ATHENE | Goethe-Universität Frankfurt | Fraunhofer SIT

ECO Security Expert Talk

Videokonferenz, 22 Juni 2022

2

Overview

▪ DNS security in a nutshell

▪ TCP does not work

▪ New cache poisoning vector: injections over DNS

▪ Validation of DNS inputs: who and where?

▪ Injection attacks against applications and routers

▪ DNSSEC is vulnerable

▪ Conclusions

3

Domain Name System (DNS)

▪ Used to lookup resources and as a
platform for applications

▪ Resolvers perform lookup for applications or users

▪ Stub resolvers, forwarders, recursive resolvers

▪ Nameservers are hierarchical distributed
database of resources

4

DNS cache poisoning

▪ Redirect victims to malicious hosts

▪ DNS request contains random values echoed
in DNS response

▪ Hijack BGP prefix to intercept DNS request

▪ Side channels to hit the request values

▪ Fragmentation to inject bogus content

▪ Successful cache poisoning attacks are challenging,
require lots of work [CCS20, CCS21, Usenix21, Usenix22,…]

Recommended countermeasures:
→ DNSSEC validation of signed

records against on-path
→ TCP against off-path

5

DNS cache poisoning via fragmentation

▪ Attack vector published in 2011 at IEEE CNS

6

DNS over TCP considered vulnerable

▪ TCP fragmentation at the source: 393 additional vulnerable
domains out of 100K Alexa

▪ TCP fragmentation at intermediate routers: > 600 routers
in > 50 ASes

▪ The fragments with TCP segments can be reduced to much lower sizes

▪ Much more effective attacks

DNS responses are vulnerable to similar injection attacks like over UDP

7

Overview

▪ DNS security in a nutshell

▪ TCP does not work

▪ New cache poisoning vector: injections over DNS

▪ Validation of DNS inputs: who and where?

▪ Injection attacks against applications and routers

▪ DNSSEC is vulnerable

▪ Conclusions

8

Well known: User inputs are not trusted!
Need to be sanitized/validated.

New: Attacks via inputs from other (trusted) sources

https://XKCD.com

New attack vector: Injections over DNS

9

“Be strict when sending and tolerant when receiving”
[RFC1958]

▪ DNS follows the end-to-end principle [RFC3597, RFC1035]

▪ Intermediate hosts (resolvers) should only interpret the data they need

▪ Everything else forwarded unchanged

▪ Allows easy adoption of new applications over DNS

▪ We show DNS transparency can be
exploited for injection attacks

10

Components in DNS resolution chain

1. Nameserver provides records in line-format

▪ Record data can contain any value

▪ Line format: List of labels, length of each label is prepended

3. Resolvers

▪ Treat DNS record data transparently

4. Stub-resolvers / DNS-library

▪ Translates the line-format DNS data into textual form

▪ Text format: Labels are separated with period (.)

5. Application

▪ Uses the data

Application triggers a query…

11

Handling in DNS resolvers

▪ DNS Resolvers handle DNS data transparently

▪ 96% of the tested resolvers (>1.3M) are standard
compliant

▪ What happens if

▪ Labels contain non-printable chars (i.e., NULL)

▪ Labels contain periods (.) ?

▪ Resolvers misinterpret period-in-label, NULL
▪ www\.victim.com → www.victim.com

▪ victim.com\000.attacker.com → victim.com

Resolvers tested:

In lab:
7 recursive, 4 forwarders

Public:
11 public resolvers

In-the-wild:
1.3 million open resolvers
from censys dataset

12

Cache poisoning via injection

▪ Trigger query for attacker.com, return victim.com\000.attacker.com

▪ Record in bailiwick: it is a subdomain of the domain in query attacker.com

▪ Record is processed and cached as victim.com IN A 6.6.6.6

▪ Cannot be prevented with DNSSEC

▪ Misinterpretation happens after DNSSEC validation

attacker.com IN CNAME victim.com\000.attacker.com
victim.com\000.attacker.com IN A 6.6.6.6

victim.com IN A 1.1.1.1

100K open resolvers
in the Internet
vulnerable to cache-
poisoning due to
misinterpretation!

13

Handling in stub resolvers

▪ Domain names vs. hostnames [RFC952]

▪ Domain names can contain any data

▪ Resolvers do not filter

▪ Hostnames can only contain [a-z0-9-.]

▪ POSIX specifies that libc resolver functions
operate on hostnames not domain names

▪ Stub-resolvers should validate!

▪ But:

▪ Only 1 out of 10 validates

▪ 7 out of 10 misinterpret zero or period Stub resolver test results (PTR)

14

Handling in applications

▪ DNS data seems to come from the OS
→ developers tend to trust it

▪ Application developers are not DNS developers

▪ Not aware that DNS records can contain any value

▪ Validation would be challenging to implement…
detect decoding errors: a\.b.com or a.b.com

▪ Vulnerabile to attacks:
XSS, Stack overflow, Buffer Overflow, Config injection, …

Applications do not validate DNS records

None of the applications validate!

15

Injection attacks against applications

▪ Eduroam: international system for user
identification in research institutions

▪ Vulnerability in Dynamic Peer Discovery of
Eduroam

▪ The developers and DFN are notified

▪ CVEs registered and patches available

→ Important: need to be installed manually

▪ XSS in OpenWRT

▪ ANSI escape code injection into ping

16

Injection attacks against residential routers

▪ Setup

▪ 15 (43%) routers vulnerable

▪ 10 routers vulnerable to injections

▪ 11 vulnerable to derandomization
(TXID, ports)

▪ 5 vulnerable to DNSSEC disabling

▪ 11 routers not standard compliant

▪ E.g., no support of TCP

17

White-box analysis of firmware

▪ Special character misinterpretation

▪ Vulnerable decoder implementations

▪ Vulnerable cache implementations
▪ Qname-to-address map

▪ Qname-to-packet map

▪ TXID forwarding: forwarders extract min info from
packets (TXID and qname) and ignore the rest

▪ Do not change the TXID → forward as is

▪ No source port randomization

▪ Some implementations set static port

▪ Some chose with rand() C function: PRG is seeded with srand(time(NULL))
current UNIX timestamp in seconds from January 1, 1970

▪ Should produce random time, but, the time is reset to January 1, 1970
after every reboot

18

Vulnerable routers in the wild with ad network

▪ Create fingerprints of routers

▪ Images routers use

▪ Default addresses from factory settings

▪ Special domain names used by vendors to redirect to
web interface

▪ We embed a js on our website

▪ We identified web interface in 973 clients

▪ We found 929 vulnerable routers

19

Keep it Simple Stupid: also relevant for routers

▪ Many residential routers implement DNS forwarders

▪ But, do not implement most functionality and security features of DNS

▪ Remove DNS from routers: implement forwarding as a simple NAT rule

▪ Resolver of ISP eliminates performance penalty

▪ The resolvers of the ISP are in proximity

▪ The caches also include records cached on routers

20

Overview

▪ DNS security in a nutshell

▪ TCP does not work

▪ New cache poisoning vector: injections over DNS

▪ Validation of DNS inputs: who and where?

▪ Injection attacks against applications and routers

▪ DNSSEC is vulnerable

▪ Conclusions

21

DNSSEC is vulnerable and can be disabled

▪ Multiple algorithms were standardised for DNSSEC

▪ Most zones are signed with RSA, some with ECDSA

▪ Most resolvers support RSA and ECDSA

▪ Sign zones with new algorithms

▪ Only unsupported algorithms → SERVFAIL or no validation

▪ Supported and unsupported algorith→ in some cases leads to vulnerabilities (even with
public DNS providers)

▪ Countermeasures can lead to failures, e.g., during key rollover

22

Conclusions

▪ Misinterpretations and wrong processing all the way

▪ Who should validate?

▪ Applications do not know what should be the correct decoding

▪ If DNS resolvers start validating:
(1) Will lose transparency
(2) Cannot know what is valid in advance

▪ Routers are mostly vulnerable

▪ Mitigations:

▪ Resolvers: Test your resolver with https://xdi-attack.net/

▪ Fix vulnerabilities: CVE-2021-20314, CVE-2021-32019, CVE-2021-2432, CVE-2021-32642,
CVE-2021-33195, CVE-2021-3672, CVE-2021-22931, CVE-2021-43523,…

▪ Our works shows the complexity and challenges of content validation for zero trust security

Challenges with validation:
- Which inputs are illegal and

should be filtered?
- What happens with new inputs

that may be discovered?
- How to update all resolvers in

the world to support this?

23

Vielen
Dank!

Thank you very
much!

Merci beaucoup!
תודה רבה!

Dziękuję!

Dank je wel!

çok
teşekkürler

zor spas
Grazie mille!

Muchas gracias

