

ECO Visit To Emerald Isle CommScope Bray March 5th 2015

The Modular Data CentreEconomic, Technical and Efficiency Models

Willie O'Connell, M.D. DCoD Europe

Contents

- Modular Designs
- Flexibility

- Efficiency
- Economic Advantages

Containerised Data Centres

MSXU 269 526

(9) alitaialitamerco.uk

PO NU 2057

COMMSCOPE®

Typical Container Design:

226

Fixed, inflexible configurations not optimized for Data Center equipment, poor air-handling, energy inneficient.

Relatively low cost Mobile Robust

MARREN

MAES

Modular Designed Purpose-Built Data Centres

Combining the Flexibility of Traditional with the Time-to-Value of Modular

CommScope DCoD Solution Overview

Building Blocks

- DCU 01 (1 Rack)
- DCU 04 (4 Racks)
- DCU 10 (10 Racks)
- DCU 20 (20 Racks)
- DCU 30 (30 Racks

Universal Features

- 5 to 35 kW per Rack
- 3rd Party Racks, Cabinets, White Space
- TIER, Mechanical, Electrical, Security, Fire, Core Infrastructure Customizable

Vestibule

- Standard and Large
- Adjoining white space for: (optional infrastructure; UPS; Switch Gear; Patch Panels; Technician Workstations)

CommScope DCU-04, 4 Rack Data Center

PRIVATE AND CONFIDENTIAL © 2013 CommScope, Inc

CommScope DCU Expandability – Seamless Hot/Cold Aisles

CommScope DCU-20 EXPANDABLE 20 Rack Data Center

CommScope DCU-30 (30 Racks)

©2014 CommScope, Inc. All rights reserved. All trademarks identified by T or TM are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information.

^{©2014} CommScope, Inc. All rights reserved. All trademarks identified by T or TM are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information.

CommScope DCU-30 – Side and Plan Views

COMMSCOPE°

DCoD Technology

DCoD Technology

DCoD Technology

ASHRAE Air Quality

COMMSCOPE[®]

	Class	IT Equipment Type	Environment Control (dust and particulates filtering)	
MERV 4	A1	Enterprise servers and critical data storage	Tightly controlled MERV 6 + MERV 14 new air MERV 10 Air recycled	MERV Options
	A2	Enterprise servers and data storage	Controlled MERV 6 + MERV 14 new air MERV 10 Air recycled	11 or 15 or 16
	A3	Other servers and data storage, workstations	Same as A2	
	A4	Other servers and storage, workstations	Same as A2	

Agility - Flexibility - Manageability

Global Deployments

COMMSCOPE°

CommScope Cooling System Overview

Highly Efficient Proprietary Evaporative Cooling and Re-Heating system

- Direct Outside Air System
- Multi Stage Air Filtration and Moisture Elimination
- Filtration Options Based on Environment
- Multi-Stage Redundant Evaporative Cooling
- Proprietary Air Mixing Chamber
- Overall System Eliminates typical DX or Chilled Water Infrastructure
- Requires little water when used. No chemical waste
- Optional Integrated DX or Chilled Water Coils for supplemental Peak cooling and 100% recirculation with no outside air IF required

ASHRAE

A1

COMMSCOPE[®]

Evaporative Cooling Works

THE PRINCIPLE OF ADIABATIC COOLING

Remote Real Time Monitoring & Controls

	I connect	disc	connect			LOCAL CONNEC	т 🕆 🚺
REAL			TEMPERATU	JRES		STATUS	VALARMS
DOORS	OUTSIDE AIR	DB	0 °C	Δ		DOORS	FAN DOORS
FAN DATA		RH	0.0 %	A		LIGHT SWITCH	LIGHTS
POWER		_	MIN	MAX	AVERAGE	UPS PLC STATUS	
MONITOR	COLD AISLE	DB	0 °C	0 °C	0 °C	WATER LEAK	
PSYCROMETRIC		RH	0.0 %	0.0 %	0.0 %	EAN STATUS	
CHART	HOT AISLE	DB	0 °C	0 °C	0 °C	DAMPER STATUS	
LOG DATA	ΔΤ		0 °C	0 °C	0 °C	DAHPER STATUS	
SET	AT SET POINT		0 °C]		FIRE PREALARM	FIRE ALARM
POINTS	FAN OUTPUT		0 %]		GAS DISCHARGE	
	AIRFLOW		0.00 m3/s				
	AIRFLOW SP					FILTER I	FILTER 2
	VESTIBULE TEM	р	0 °C			FILTER 3	FILTER 4
	VESTIBULE HEA	TER	0 %]			
		POWER	MONITOR		EVAP. COOL		
	CURRENT TOTAL 0.0 kW		RUNNING				
			HRS	0	STEP 1		
			TOTAL	0.0kW/hr	STEP 2		
	SERVER 0	0 kW	SERVER	0.0kW/hr	STEP 3		
	PUE 0.	000	PUE	0.000	STEP 4		

Remote Real Time Monitoring & Controls

	I connect disconnect	LOCAL CONNECT *C
REAL	SET POINTS OPERATING MODE	
DOORS		SET POINTS
FAN DATA	OPERATING RANGE	FAN PID PARAMETERS
POWER		M (0) AVERAGE DELTA T SETPOINT
VIEW		(1) MAX DELTA T (MIN SERVER IN / MAX SERVER OUT
PSYCROMETRIC CHART		(0) DELTA T
LOG		(2) DELTA T BASED ON HILO TEMP
SET		DELTA T
POINTS		LO/HI TEMP SET POINT
	OPERATING PARAMETRES	(3) AIR FLOW BASED ON HI/LO TEMP
	MIN. FAN OUTPUT %	AIR FLOW
	VESTIBULE SP	(4) MAXIMUM HOT AISLE TEMPERATURE
	L	MAX HOT AISLE TEMP SET POINT
	SOLENOID VALVE TIMER	UPDATE EDIT

Weather/Site Analysis Tools

Know Exactly how a DCU will Perform, Anywhere, Hourly

COMMSCOPE

Sample Project Layout Design 80 to 320 Cabinets (up to 4.8Mw IT HQ)

A modular approach build around the CommScope advance solution DCU-20:

- 20 Cabinets per module
- Up to 30 kW per cabinet
- Native Free Cooling for low PUE and reduced cost of operation
- Pre-manufactured solution for high quality and fast deployment

Sample Project Layout design Phase 600kw (60 cabs)

A modular approach for a phased investment up to 4 phases

- First phase construction lead time : max 8 months (not including building permit)
- Time to expand : max 4 months

Sample Project CAPEX estimates

These CAPEX estimates are calculated on a Tier 3 + configuration (equivalent to a Tier 4 infrastructure fully redundant 2N without the additional cost of the +1 component per stream)

Phase 1	7 kW / Rack	10 kW / Rack
Racks	80	80
Power HQ IT	560 kW	800 kW
kW / m²	3	4
CAPEX	6 700 000 €	7 250 000 €
Phase 4	7 kW / Rack	10 kW / Rack
Racks	320	320
Power HQ IT	2 240 kW	3 200 kW
kW / m²	3	4
CAPEX	16 250 000 €	18 500 000 €

Moving to a flat land will save the metallic structure estimated at 2,5 M€ (Phase 4) Moving to a standard Tier 3 installation can save 10 to 15 % of the CAPEX figures

Sample Project – Cost Per Cabinet

Currently most Data Centre are designed for 2 to 3 kW Max per m² (except HPC DC)

- 2 kW / m² = 5 kW per Cabinet
- 3 kW / m² = 7,5 kW per cabinet (defined as high density)

Tier 3 + reference							
k€	KW m²	Surface m ²	Cost m²	Racks	Cost Racks	Surface Rack	Power Rac kW
13 000 000	1	1000	13000	400	32 500 €	2,5	2,5
16 000 000	2	1000	16000	400	40 000 €	2,5	5
19 000 000	3	1000	19000	400	47 500 €	2,5	7,5
21 000 000	4	1000	21000	400	52 500 €	2,5	10
24 000 000	5	1000	24000	400	60 000 €	2,5	12,5
27 000 000	6	1000	27000	400	67 500 €	2,5	15

Projet	Sample Project					
Racks	САРЕХ					
320	10 400 000 €					
320	12 800 000 €					
320	15 200 000 €					
320	16 800 000 €					
320	19 200 000 €					
320	21 600 000 €					

Tiers 3 reference							
k€	KW m²	Surface m ²	Cost m²	Racks	Cost Racks	Surface Rack	Power Rack kW
11 000 000	1	1000	11000	400	27 500 €	2,5	2,5
13 000 000	2	1000	13000	400	32 500 €	2,5	5
15 000 000	3	1000	15000	400	37 500 €	2,5	7,5
17 000 000	4	1000	17000	400	42 500 €	2,5	10
19 000 000	5	1000	19000	400	47 500 €	2,5	12,5
21 000 000	6	1000	21000	400	52 500 €	2,5	15

Projet	Sample Project					
Racks	CAPEX					
320	8 800 000 €					
320	10 400 000 €					
320	12 000 000 €					
320	13 600 000 €					
320	15 200 000 €					
320	16 800 000 €					

Sample Project Free & Additional Cooling Hours

Sample Project OPEX Energy / Saving with Free Cooling

Year	2015	2016	2017	2018	2019	2020	2021	2022
Phase	1		2		3		4	
Target IT Load (kW)	800		1600		2400		3200	
IT Load (KW)	400	800	1200	1600	2000	2400	2800	3200
Load rate	50%	100%	75%	100%	83%	100%	88%	100%
PUE Chillers ASHRAE 2008 (Reference)	1,87	1,63	1,69	1,63	1,66	1,63	1,65	1,63
Energy (MWh/Year)	6 552	11 423	17 765	22 846	29 083	34 269	40 471	45 692
Energy Cost (k€/year)	721	1 257	1 954	2 513	3 199	3 770	4 452	5 026
Cumulative Energy Cost (k€)	721	1 977	3 931	6 445	9 644	13 413	17 865	22 891
PUE Free Cooling + Chillers ASHRAE 2011	1,49	1,31	1,35	1,31	1,33	1,31	1,32	1,31
Energy (MWh/Year)	5 221	9 180	14 191	18 361	23 302	27 541	32 377	36 722
Energy Cost (k€/year)	574	1 010	1 561	2 020	2 563	3 030	3 561	4 03/9
Energy Savings (MWh/year)	1 332	2 243	3 574	4 485	5 782	6 728	8 094	8 970
Cost Savings (k€/year)	146	247	393	493	636	740	890	987
Energy & Cost Savings (%/year	20,32%	19,63%	20,12%	19,63%	19,88%	19,63%	20,00%	/19,68%
Cumulative Energy Cost (k€)	574	1 584	3 145	5 165	7 728	10 758	14 319	18/359
Cumulative Cost Savings (k€)	146	393	786	1 280	1 916	2 656	3 546	4 533
Cumulative Cost Savings (%)	20,32%	19,88%	20,00%	19,86%	19,86%	19,80%	19,85%	19,80%
PUE Free + Evaporative Cooling ASHRAE	1,41	1,23	1,27	1,23	1,25	1,23	1,24	/ 1,23
Energy (MWh/Year)	4 941	8 620	13 350	17 240	21 900	25 860	30 415	34 479
Energy Cost (k€/year)	543	948	1 469	1 896	2 409	2 845	3 346	3 793
Energy Savings (MWh/year)	1 612	2 803	4 415	5 606	7 183	8 410	10 056	11 213
Cost Savings (k€/year)	177	308	486	617	790	925	1 106	1 233
Energy & Cost Savings (%/year	24,60%	24,54%	24,85%	24,54%	24,70%	24,54%	24, <mark>8</mark> 5%	24,54%
Cumulative Energy Cost (k€)	543	1 492	2 960	4 857	7 266	10 110	13 456	17 248
Cumulative Cost Savings (k€)	177	486	971	1 588	2 378	3 303	4 409	5 643
Cumulative Cost Savings (%)	24,60%	24,56%	24,71%	24,64%	24,66%	24,63%	24,68%	24,65%

More than 20 % energy saving positioned

COMMSCOPE°

Up to 3,5 M€ of OPEX reduction aver 7 years

CommScope – Example DCU-30 Expandable

29

CommScope – Example DCU-20 Vestibule

COMMSCOPE

True Collocation Hallway, Ample room for Rack and Pallet Movement, Doors on IT Rooms and Electrical Panels Not Shown Customizable Room for Technician Benches, Patch Panels (MDF/IDF), UPS

32

DCoD – Purpose Built Data Centers

COMMSCSPE°

TCO

- Highly Efficient Data Centers (PPUE) of 1.03 to 1.06
- Extremely Competitive Cost PER MW
- Right Sized Based on Your Requirements
- Outside Air, Innovative Evaporative Cooling and Re-Heating System

Agility and Flexibility

- Expandability On Demand
- CommScope Designs and Delivers Infrastructure
- Racks, Cabinets, White Space
- Off-the-Shelf Options or Customized
- Deployed indoor or outdoor
- Operational Manageability
 - Comprehensive Fully Remote DCIM
 - Familiarity
 - Extremely Low Maintenance

CommScope DCoD

Thank You

COMMSCOPE°