

Andreas Ganz, June 2013

Data Centers Efficiency

Power and productivity for a better world™

A global leader in power and automation technologies Leading market positions in main businesses

- 145,000 employees in about 100 countries and 130 years of history
- \$38 billion in revenue (2011)
- \$5 billion in service revenue (2011)
- Publicly owned company with head office in Switzerland
- Leading provider of the electrical infrastructure solutions in Data Centers
- Completion of the offered portfolio for innovative DataCenter-solutions through several M&As: PowerAssure, Newave, Validus DC, Thomas&Betts, Ventyx

Data Center Facts

- Invest of a 9 M\$ (1.000 sqm) in a Tier 3 Data Center with expected reliability of the infrastructure 99.9820% (downtime of 1.6 h p.a.)
- Or invest of 14 M\$ (1.000 sqm) in a Tier 4 Data Center with expected reliability of the infrastructure 99.995% (downtime of 0.4 h p.a.)
- With measured Application Reliability (fact) of 99.65% (downtime of 31 h)
- But the SLA defined IT Application Reliability measured by % uptime is 99.999% (downtime of 0.1 h)
- → Main Concern: (1) Supply Application Reliability then
 (2) Cost Efficiency

Data Center Risk Factors and Mitigation Strategies

Reliability of IT-Services defined in a SLA = $\frac{\text{MTBF}}{\text{MTTR} + \text{MTBF}} \times 100\%$

R (IT-Services) = R (Power) * R (Cooling) * R (Connectivity)

* R (Servers / Storage / Network / Security)

Data Center "Participants"

Key Measure: Application Service Levels Secondary: Efficient Use of Assets

Optimization, operational BI,

load management

Data management, integration and reporting

Capacity planning, forecasting,

simulation, analytics

The Limit of a Software Defined Data Center Today 50% of downtime is caused by power problems

A few pertinent recent, notable examples

- Equinix Syd2: A utility power incident was detected at 8:02AM site local time and customer loads were transferred to generator power. Multiple AHUs tripped and had caused high temperature. Navitaire went down which stopped multiple airlines in Sydney.
- Internap: Reportedly out of fuel and offline, but it is trying to get more fuel to the building. As of 12:55pm ET, the Internap network operations center hotline was playing a recorded message that says the facility is "currently without power due to flooding" and that co-location and IP customers can expect "widespread outages" due to Hurricane Sandy.
- Amazon: A slew of sites, including Netflix, Instagram and Pinterest, have gone down this evening, thanks to "power issues" at Amazon's Elastic Compute Cloud data center in North Virginia.

Sony, a problem has occurred with the Nettlik site. If you continue to have brouble with the site, you can notify us of this <u>Sate Error</u>. Nettlis Hone

Utilities Facts

- Unexpected Outages
- Generation Problems
- Transmission Issues
- Intermittent Renewables
- Bad Forecast
- Over Production
- Over Utilization
- → Main Concern: Supply Reliability Measured by CAIDI, SAIDI, SAIFI

 \rightarrow

 \rightarrow

Risk Factors and Mitigation Strategies:

- Adequate Generation
- Transmission
- Distribution
- Supply / Demand Balance →

Germany facing power blackouts

Germany could be struck by power blackouts this winter as the country struggles with a shift to renewable energy the economy minister has warned.

- Overbuild, use low LF Peaking Plants (v. costly)
- Multi-path, Congestion Management
- Redundancy, fast restoration
 - Adequate reserves or demand response

Data Center – multiple sites strategy

Option	DtC 1				DtC 2					DtC 3				Summary			
	TIER Reliability sqm (Facility)		IT Capacity		Reliability (Facility)		Invest / sqm (Facility)	IT Capacity		Reliability (Facility)		Invest / sqm (Facility)	IT Capacity	R (Facility)	delta to TIER 4	downtime (min)	Invest (Facility)
1	4 99,9950% 240) 14.000	100%											99,9950%	0,0000%	26	3.360.000
2	3 99,9820% 240	9.000	100%											99,9820%	-0,0130%	95	2.160.000
3	2 99,7410% 240	6.000	100%	2	99,7410%	240	6.000	100%						99,9993%	0,0043%	4	2.880.000
4	2 99,7410% 120	6.000	50%	2	99,7410%	120	6.000	50%	2	99,7410%	120	6.000	50%	99,9980%	0,0030%	11	2.160.000
5	1 99,6710% 120	4.500	50%	1	99,6710%	120	4.500	50%	1	99,6710%	120	4.500	50%	99,9967%	0,0017%	17	1.620.000

Mitigate against Power Risk using

© ABB Group June 3, 2013 | Slide 10

Software-Defined Product Portfolio

Software Defined Power

Software-Defined Power

Monitoring & Analytics

- Appliance based integration with existing IT and Facility equipment and monitoring systems
- On-premise or hosted data repository
- IT Inventory integration
- IT Equipment reference data

Automation

- Out-of-band integration with facility and IT components
- Appliance based for easy security integration with in house security framework
- Based on runbooks (standard operating procedures) as defined for operations center
- Event driven, ongoing or schedule based

Energy Market

- Real time and day ahead power pricing details
- Demand response requests using OpenADR
- Alerts and energy forecast information
- Creation of IT forecast and data center operating schedule
- Capacity placement and energy trading integration

Decathlon and Global Energy Intelligence

Result of Software-Defined Power

Study by LBNL, SVLG & Power Assure completed in August 2012

- Shows how to use automation and analytics to participate in regional demand response markets
- Results:
 - Increased availability and reliability by shifting and shedding load automatically across regional data centers
 - Usable for energy cost arbitrage using a "Follow the Moon" strategy

From: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings from Field Studies – LBNL August 2012

IT Forecast Leads to Data Center Forecast

Energy Management

© ABB Group June 3, 2013 | Slide 16

Certified Emission Reductions - CERs Countries E. g. China

- Carbon Credits available for Dynamic Power Management
- United Nations CDM AM0105 currently translated
- Requires baseline measurements
- Requires dynamic power management as implemented in Software-Defined Power by Power Assure
- 10 year CO2 credit creation for all dynamic reductions

United Nations Climate Change Carbon Mechanisms

Data Centers as Distributed Energy Resources

- Data Center can increase reliability by knowing the status of the grid and being able to react, for instance by moving application load, turn on generation, pre-cooling, etc.
- Data Center will help stabilize the grid with these actions even though it is not a primary concern of the data center
- This cooperation between data center and utility can be monetized for both parties

Pre-Requisites for Participation

Data Center must have:

- Onsite storage (thermal, batteries, UPS, fly wheels, etc.)
- Own & operate multiple sites across geographies
- Software-defined power by ABB (Power Assure)
- Bi-directional power capability without transfer switch (for additional benefits)

Regulatory environment must support some of these:

- Demand response programs
- Flexible power purchase agreements
- Smart metering for time of use pricing etc.
- Direct access to the wholesale power market
- Adequate retail rates for onsite generation no net zero environment

Power and productivity for a better world[™]

