

02.03.2010

PUE - DCIE - CADE

- Worüber definiert sich Effizienz ?
- Wie viele KPI's sind erforderlich?
- > Brauchen wir einen neuen Ansatz zur Effizienzbewertung?

Gerhard Leo Büttner Geschäftsführer, Dim Design Institut München

Design Institut München

Gesamtplanung von Rechenzentren und Sicherheitsarchitektur. Seit über 40 Jahren Erfahrung mit RZ -Design in 9 Dille ensionen, gesammelt, aus 500 abgewickelten Projekten.

Die erste Dimension

Bestandsanalyse mit Risikobewertung Die zweite Dimension

Machbarkeitsprüfung, Risikobeseitigung Die dritte Dimension

Anforderungsprofil und Pflichtenheft

Die vierte Dimension Realisierungskonzept Die fünfte DÜLLension

Gesamtplanung aus einer Hand

Die sechste Dil ension

Objektüberwachung und Bauleitung

Die siebte Dimension

Know-How-Geberschaft Die achte Dillension Projektmanagement Die neunte Dimension RZ-Zertifizierung

Begriffsdefinition

The Green – Grid - Organisation

Power Usage Effectiveness

Wert für die Effizienz eingesetzter Energie im Rechenzentrum

Wert = nat. Zahl, je größer, je schlechter

Data Center Infrastructure Efficiency

Wert für den Wirkungsgrad der im Rechenzentrum eingesetzten Energie

> % - Wert, je höher je besser

McKinsey & Company The Uptime Institut

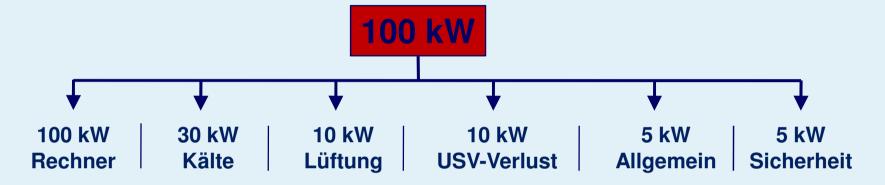
Corporate Average Data Efficiency

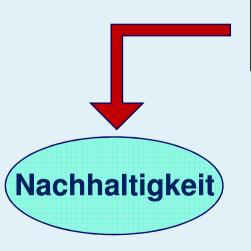
Wert für die Effizienz des IT Betriebes im Rückbezug zur Wirtschaftlichkeit der Basis-Infrastruktur

> % - Wert, je höher, je besser

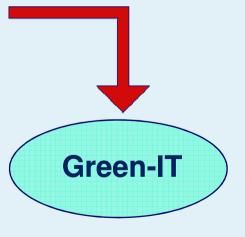
Design Institut München

Webseite: www.dim.de
E-Mail: dim@dim.de


02.03.2010


Am Mitterfeld 55 | D-81829 München | Tel.: +49 (0)89 427 435-0 | Fax +49 (0)89 427 435-30

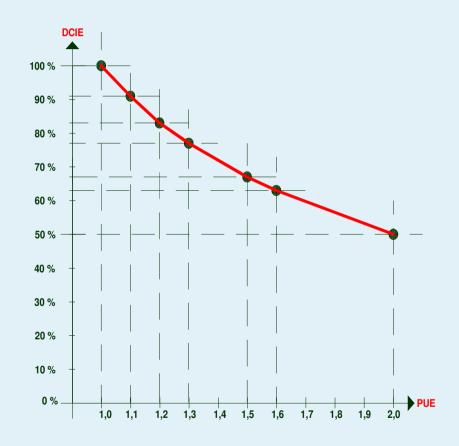
PUE – Power Usage Effectiveness



PUE =
$$\frac{\sum P}{P_R} = \frac{160 \text{ kW}}{100 \text{ kW}} = 1.6$$

1,1 < PUE < 1,5

- Virtualisierung
- Freie Kühlung
- Natürliche Kälte
- Kraft-Wärme-Kopplung (KWK)
- Brennstoffzelle



DCIE – Data Center Infrastructure Efficiency

$$DCIE = \frac{1}{PUE} \times 100 \%$$

66,6% < DCIE < 90%

Design Institut München

Webseite: www.dim.de
E-Mail: dim@dim.de

02.03.2010

Am Mitterfeld 55 | D-81829 München | Tel.: +49 (0)89 427 435-0 | Fax +49 (0)89 427 435-30

Design Institut München

PUE - DCIE CADE

PUE Aussagen zum Teilbereich RZ-Basis Infrastruktur **DCIE**

Trotz bestem PUE/DCIE kann der RZ-Betrieb vollends unwirtschaftlich sein!

Der PUE liefert eine Aussage zum Energieaufwand für den Betrieb aller DV-Systeme, nicht aber eine Aussage dafür, ob der RZ-Betrieb effizient ist.

Für DV-gestützte Prozesse im Unternehmen ist die Betrachtung PUE/DCIE nicht lösungsgeeignet, weil sie keine Beziehung zwischen Energieverbrauch / Rechnerleistung schafft.

02.03.2010 Webseite: www.dim.de E-Mail: dim@dim.de

CADE – Corporate Average Data Efficiency

Akronym Definition

CADE Commission on Accreditation for Dietetics Education

CADE Conselho Administativo de Defesa Econômica

CADE Conference on Automated Deduction

CADE Canadian Association for Distance Education

CADE Customer Account Date Engine

CADE Center for the Advancement of Distance Education

CADE Administrative Council für Economic Defense

CADE Corporate Average Data Efficiency

CADE Center for Agricultural Development and Entrepreneurship

CADE Computer Aided Document Engineering

CADE Computer-Assisted Data Entry

CADE Computer Aided Design and Engineering

CADE Controller/Attitude-Direct Electronics

CADE Computer Aided Design Equipment

CADE Computer Aided Data Entry

CADE Combined Allied Defense Experiment

CADE Commercial Ada Development Environment

CAFE / CADE

Aus CAFE wird CADE!

CAFE △ Car Fuel Efficiency

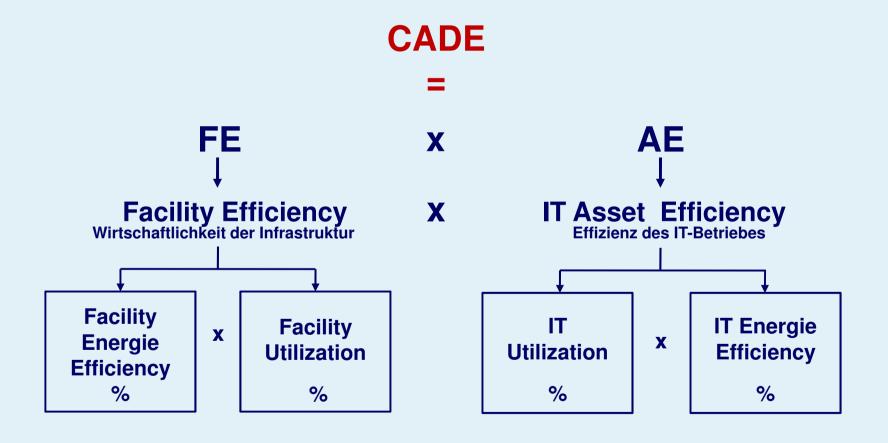
CAFE

Kennzahlen der Gesamtheit der Eigenschaften eines Fahrzeuges, 7.B.:

- Maschine / Verbrauch
- Luftwiderstand
- Rollwiderstand
- Gewicht, etc.

CADE

Kennzahl für die


- CPU Auslastung
- Effektivität, mit der DC IT Equipment **Energie in nützliche Arbeit** verwandelt.

Webseite: www.dim.de 02.03.2010 Design Institut München E-Mail: dim@dim.de 19

CADE – Corporate Average Data Efficiency

^{*} Quelle: McKinsey "Revolutionizing Data Center Energy Efficiency

Design Institut München

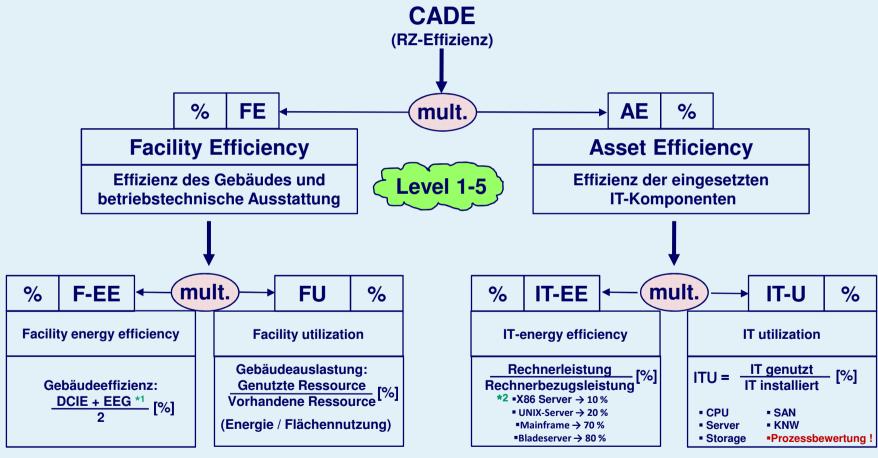
0

Webseite: www.dim.de

02.03.2010

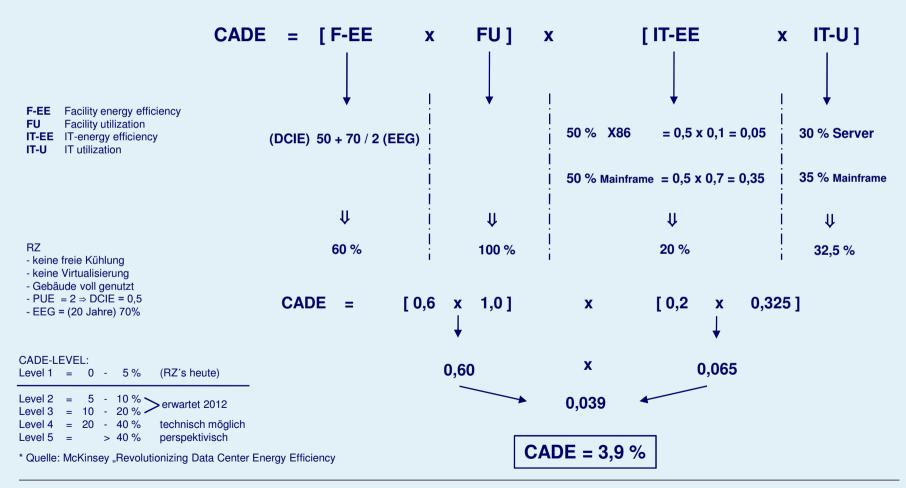
20

Am Mitterfeld 55 | D-81829 München | Tel.: +49 (0)89 427 435-0 | Fax +49 (0)89 427 435-30


E-Mail: dim@dim.de

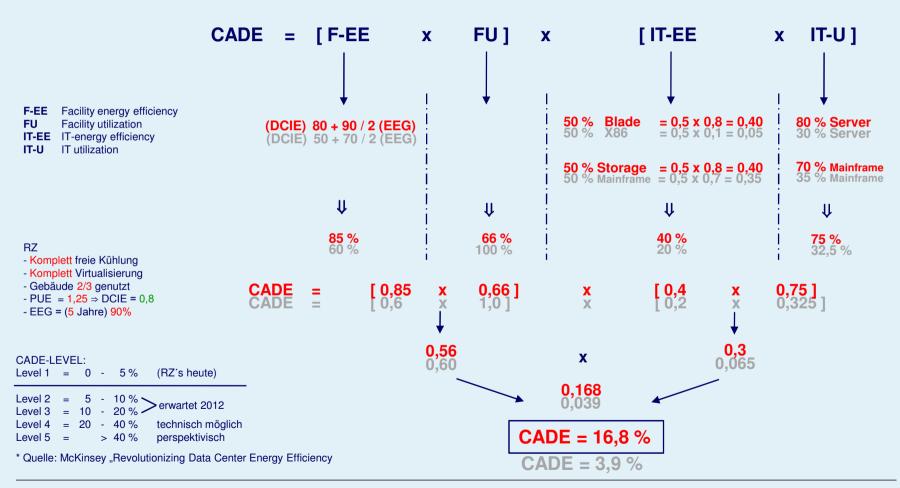
Design Institut München

CADE – Corporate Average Data Efficiency


*1 : EEG – Energieeffizienz Gebäude unter Berücksichtigung der Dämmwertkoeffizienten.
*2 : Wertermittlung ITEE schwierig → Herstellerangabe, Schätzung, Literaturangabe, Messung?

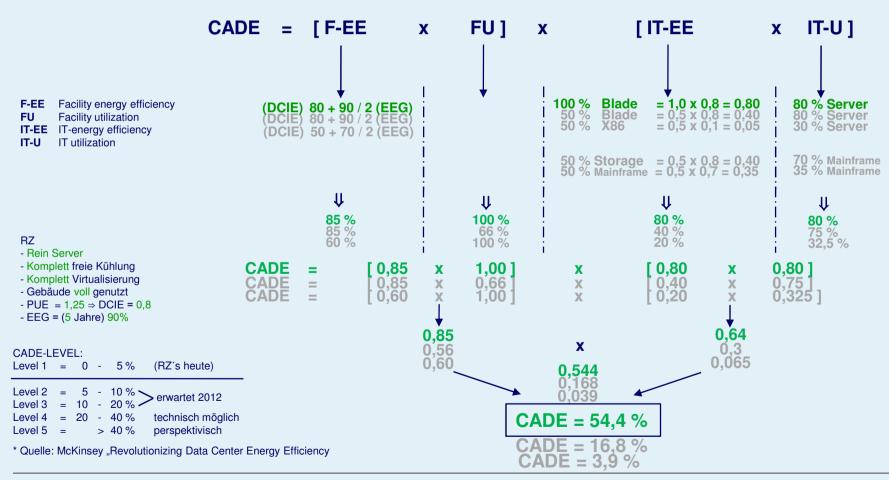
Webseite: www.dim.de E-Mail: dim@dim.de

CADE - Berechnungsbeispiele


Design Institut München

Webseite: www.dim.de
E-Mail: dim@dim.de

CADE - Berechnungsbeispiele


Design Institut München

Webseite: www.dim.de
E-Mail: dim@dim.de

CADE - Berechnungsbeispiele

Design Institut München

E-Mail: dim@dim.de

Webseite: www.dim.de

CADE - Ergebnisinterpretation

DCIE Ergebnisverbesserung gut

FU Gebäudereserve **Ergebnisverschlechterung**

IT-EE **Ergebnisverbesserung** gut

IT-U **Ergebnisverbesserung** qut

Ist die Bewertung der Gebäudeeffizienz im Hinblick auf freie Ressourcen Ergebnisrelevant / Ergebnisverbessernd / Ergebnisfördernd?

best practice - PUE / DCIE

Rechnerbetrieb optimieren

Energieeinsparung bei der Primärstromversorgung

- ➤ KWK*1 (Primärenergieträger für Strom- und Wärmeerzeugung (somit Kälteerzeugung) nutzen) wie BHKW*2, Brennstoffzelle
- ➤ Einsatz alternativer, regenerativer Energien, wie Solarenergie
 - Windkraft
 - Wasserkraft
 - Biomasse (Biogas)

Wirkungsgrade bis 90% möglich, entgegen normalen Kohle-, Kernkraftwerken mit 30% Energieeinsparung bei Kälteerzeugung, Rückkühlung

- > Freie Kühlung
- > Wärmerückgewinnung
- ➤ Kälte über Wärme aus KWK*1
- Kälte über Wärme aus Brennstoffzelle

Grundwasserkühlung

Stromverbrauch kann bis zu 30% reduziert werden

Design Institut München

^{*1} KWK = Kälte-Wärme-Kopplung. *2 BHKW = Blockheizkraftwerk

best practice - CADE

IT – Systeme: Effizienz

IT – Systeme: Auslastung

- > Rechnerbezugsleistung minimieren
- > Rechnerleistung maximieren

- > Prozessoptimierung
- > Virtualisierung
- > IT Systeme minimieren
- ➤ Auslastung IT Systeme maximieren

energieoptimierte IT-Systeme

Ţ

prozessoptimierte IT-Systeme

Webseite: www.dim.de

PUE - DCIE / CADE

Review Tagesaufgabe

PUE als einzelner KPI* unzureichend – im AK weitere KPI's erarbeiten

- > PUE für sich allein für RZ- Betriebseffizienz unzureichend ⇒ stimmt!
- ➤ Energieeffizienz für sich allein führt zu keiner ganzheitlichen Effizienzbewertung.
- CADE ist die richtige Antwort, wenn es um Gesamteffizienzbewertung geht, weil im CADE sowohl Gebäudeeffizienz, wie auch Computereffizienz in Beziehung zueinander stehen.

^{*} Key Performance Indicator

Design Institut München