

U n i v e r s a l A c c e p t a n c e S t e e r i n g G r o u p

Introduction to Universal Acceptance
Mark Svancarek and Luisa Villa

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 2

About This Document
Purpose

The Internet’s technologies, including its naming components, are under continual evolution and change. In

recent years, a great number of new TLDs with ASCII characters and IDN top-level domains have been released

by ICANN. Examples include .nyc, .hsbc, .eco, and .スト

ア. However, the response to the change in the naming

landscape has not been fast enough. Many applications and

services are not being updated to manage new TLDs. This

affects the user experience. For example:

• Valid email addresses are not being accepted

• Domain names are mistakenly treated as search

terms in the address bar of the browser.

Unless software recognizes and can process the new domains, a state known as Universal Acceptance, it will

not be possible to provide a consistent and positive experience for Internet users. This document, therefore,

provides a broad introduction to Universal Acceptance to assist in the development of Universal Acceptance-

ready software.

Target Audience

• Software Developers

• Chief Technical Officers (CTOs)

• The technical community in general

Document Structure

Part 1

Baseline concepts of Universal Acceptance such as what is a Domain Name and the Domain

Name System, ASCII and Unicode, Punycode, Email Address Internationalization, and other

basic concepts.

Part 2 The five criteria of Universal Acceptance as well as the good practices for each of these

criteria. Also contains user scenarios and nonconformance practices to Universal

Acceptance, technical requirements and current challenges.

Part 3 Advanced topics such as right-to-left scripts, the Bidi algorithm, Normalization and Case

Folding.

Part 4 Contains the glossary and useful online resources.

Need more information?

The UASG and the community are available to provide advice to software developers and

implementers on what is needed.

• Contact us to share your ideas and suggestions on the topic at info@uasg.tech

• Join the Universal Acceptance discussion at http://tinyurl.com/ua-discuss

• To learn more about the effort, visit http://www.icann.org/universalacceptance

Many applications and services

are not being updated to

manage these new TLDs. This

affects the user experience.

mailto:info@uasg.tech
http://tinyurl.com/ua-discuss
http://tinyurl.com/ua-discuss
http://www.icann.org/universalacceptance

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 3

Contents

Introduction ... 5

A Brief History of Domain Name Internationalization .. 5

The Need for Universal Acceptance .. 5

Part 1: Baseline Concepts of Universal Acceptance .. 6

Domain Name ... 6

Domain Name System (DNS) ... 6

Top Level Domains (TLDs) ... 6

Generic Top Level Domains (gTLDs) .. 7

Character Sets and Scripts .. 7

ASCII and Unicode ... 7

Internationalized Domain Names (IDNs) and Punycode .. 8

Email .. 9

Addresses and Email Address Internationalization (EAI) .. 9

Dynamic Link Generation (Linkification) ... 10

Part 2: Universal Acceptance in Action .. 11

Five Criteria of Universal Acceptance .. 11

User Scenarios ... 12

Nonconformance to Universal Acceptance Practices ... 14

Technical Requirements for UA Readiness .. 15

High level Requirements ... 15

Developer Considerations ... 15

A Guiding Principle for Achieving Universal Acceptance: Postel’s Law .. 16

Good Practices for Developing and Updating Software to Achieve UA-Readiness 16

Authoritative Sources for Domain Names... 22

DNS Root Zone .. 22

Public Suffix List ... 22

Other Challenges .. 23

General .. 23

IDN-Style Email and Why It Is Not the Same as EAI .. 23

Linkification and Its Challenges ... 24

Part 3: Advanced Topics ... 26

Complex Scripts ... 26

Right to Left Languages and Unicode Conformance ... 26

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 4

The Bidi Algorithm ... 26

The Bidi Rule for Domain Names .. 27

Joiners ... 27

Homoglyph and Confusingly Similar Characters ... 28

Normalization and Case Folding .. 29

Normalization .. 29

Case Folding .. 30

Part 4: Glossary and Other Resources ... 32

Glossary ... 32

RFCs ... 34

Key Standards .. 36

Online Resources ... 37

Acknowledgements.. 39

Version Changes ... 40

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 5

Introduction

A Brief History of Domain Name Internationalization
In the 1970s, the characters available for registering domain names were limited to a subset of ASCII

characters (letters a-z, digits 0-9 and the hyphen “-“). Since the earliest .com registration, symbolics.com, in

1985, the number and characteristics of domain names have expanded to reflect the needs of the ever-

increasing global use of the Internet as a communal resource. Today, the majority of Internet users are non-

English speakers. However, the dominant language used on the Internet is English. To help with the

internationalization of the Internet, in 2003, the Internet

Engineering Task Force (IETF) started releasing standards providing

technical guidelines for the deployment of Internationalized

Domain Names (IDN) through a translation mechanism to support

non-ASCII representations of domain names in geographically

diverse local scripts (e.g., 普遍接受-测试.世界, ua-test.世界,etc.).

The Board of Directors of the Internet Corporation for Assigned

Names and Numbers (ICANN) approved the process to introduce

new IDN Country Code Top Domain Names (ccTLDs) in October

2009, with the first IDN ccTLDs added to the root zone in May 2010.

In June 2011, the Board approved and authorized the launch of the

new Generic Top Level Domain (gTLD) program, which included

new ASCII as well as IDN TLDs. The first batch of TLDs from this

program was added to the root zone in 2013. The addition of IDN ccTLDs and new TLDs has dramatically

increased the pace at which TLDs are added to the root zone.

A decade after the IETF released its IDN-related guidelines, and thanks to the ICANN New TLD Program, more

than one thousand new TLDs have now been released. In spite of all these efforts, however, much software

and many applications are still not Universal Acceptance-ready. This causes problems to Internet users,

including those whose languages are written in scripts that include non-ASCII characters.

The Need for Universal Acceptance
To keep pace with this new TLD world, new software must be built and old software and applications must be

updated. The state of successfully complying with this new world of TLDs is called Universal Acceptance.

Universal Acceptance is the state where all valid domain names and email addresses are accepted, validated,

stored, processed and displayed correctly and consistently by all Internet-enabled applications, devices and

systems. In other words, every valid web address resolves to the expected website and every valid email

address delivers mail to the expected destination. Due to the rapidly changing domain name landscape, many

systems do not recognize or appropriately process new domain names, primarily because they may be in a

non-ASCII format, because the software is not aware of the newly released TLD, or because the length of their

TLD varies in length. The same is true for email addresses that incorporate these new extensions.

The Universal Acceptance Steering Group (UASG), a community-led, industry-wide initiative that is supported

by ICANN, is working on creating awareness, identifying and resolving problems associated with Universal

Acceptance of Domain Names to help ensure a consistent and positive experience for Internet users globally.

Universal Acceptance is the

state where all valid domain

names and email addresses are

accepted, validated, stored,

processed and displayed

correctly and consistently by all

Internet-enabled applications,

devices and systems.

https://www.ietf.org/
https://www.icann.org/
https://newgtlds.icann.org/en/

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 6

Part 1: Baseline Concepts of Universal Acceptance
This section contains an overview of the basic terms and concepts necessary to understand before reading

the more advanced sections of this document.

Domain Name

A domain name is a dotted text string used as a human-friendly technical identifier for computers

and networks on the Internet. For example:

www.domain.tld

How to read a domain name:

• Each dot represents a level in the Domain Name System (DNS) hierarchy.

• A Top-Level Domain (TLD) is often called the suffix at the end of a domain name.

• The individual words or characters between the dots are called labels. For those languages

or scripts that are written from left to right (LTR),1 the label furthest right represents the

top-level domain.

• The second label from the end represents the second-level domain.

• Any labels that come before the second-level domain are considered subdomains of the

second-level domain (sometimes called third-level domains).

Domain Name System (DNS)

Each resource on the Internet is assigned an address to be used by the Internet Protocol (IP). Since

IP addresses are difficult to remember, the DNS provides a mapping between IP addresses and

human-readable domain names. Servers collectively providing a public DNS exist at well-known

addresses on the Internet.

Top Level Domains (TLDs)

Human readable domain names are managed by organizations known as registries. When a domain

name is registered, it consists of multiple text strings representing multiple domain levels, each

separated by a “.” character. In LTR scripts, the right-most domain level is the top-level domain (TLD).

Some TLDs are delegated to specific countries or territories. These are called Country Code TLDs

(ccTDs).

1 Languages or scripts written from right to left (RTL) will be discussed later in this document.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 7

Generic Top Level Domains (gTLDs)

Starting in 2013, ICANN (the organization responsible for the creation and maintenance of TLD

assignments) has approved the creation of a large number of new TLDs. These new TLDs can

represent brands, communities of interest, geographic communities (cities, regions) and more

generic concepts. Collectively, all of these new TLDs are known as Generic Top Level Domains (gTLDs).

Character Sets and Scripts

Languages are written using writing systems. Most writing systems use one script, which is a set of

graphic characters used for the written form of one or more languages. A small number of writing

systems employ more than one script at the same time. These characters or scripts can be recognized

by humans. However, they are not useful to computers. Instead, a computer needs a script to be

encoded in a way that it can process (for example, to resolve a web address). The mechanism for this

is called a character mapping or coded character set (CCS), or a code page.2 A character mapping

associates characters with specific numbers. Many different code pages have been created over time

for different purposes, but for this topic we will focus on only two: ASCII and Unicode.

ASCII and Unicode

In the examples of TLDs above, all of the text strings are represented using the Latin character set.

This character set is included in the American Standard Code for Information Interchange (ASCII, or

US-ASCII) character-encoding scheme. ASCII is an older encoding scheme and was based on the

English language. For historical reasons, it became the standard character encoding scheme on the

Internet. ASCII uses only 7 bits per character, which limits the set to 128 characters, not all of which

can be used in domain names. Domain names are limited to the characters A-Z, the numbers 0-9,

and hyphen “-“.

2 There are subtleties to the terms that are not directly relevant to the topic of Universal Acceptance. If you

are interested in more information about the terminology, a useful starting point is:

https://tools.ietf.org/html/rfc6365

Examples of common TLDs Examples of ccTLDs Examples of new gTLDs

.com

.gov

.info

.org

China = .cn

Germany = .de

United States = .us

.app

.lawyer

.shopping

.panasonic

.osaka

https://tools.ietf.org/html/rfc6365

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 8

ASCII - ISO 8859-1 (Latin-1) Table 3

Because most writing systems do not use the Latin character set, alternate encodings have also been

adopted. Unicode, also known as the Universal Coded Character Set (UCS), is capable of encoding

more than 1 million characters. Each of these Unicode characters is a called a code point. The most

common form of Unicode is called Universal Coded Character Set Transform Format 8-bit (UTF-8).

To see all Unicode character code charts, go to: http://unicode.org/charts

Internationalized Domain Names (IDNs) and Punycode

The use of Unicode enables domain names to contain non-ASCII characters. As noted earlier in this

document, domain names that use non-ASCII characters are called Internationalized Domain Names

(IDNs).4 The internationalized portion of a domain name can be in any level – not just the TLD but

also the other labels.

Since the DNS itself previously only used ASCII,5 it was necessary to create an additional encoding to

allow non-ASCII Unicode code points to be converted into ASCII strings, and vice versa. The algorithm

that implements this Unicode-to-ASCII encoding is called Punycode; the output strings are called A-

Labels. A-Labels can be distinguished from an ordinary ASCII label because they always start with the

following four characters:

• xn--

These characters are called the ACE prefix.6

The Punycode transformation is reversible: it can transform from Unicode to an A-Label and also

from an A-label back to Unicode (known as a U-Label).

The only RFC-defined7 use of the Punycode algorithm is for expressing internationalized domains.

However, rather than implement Unicode, some developers choose to apply Punycode to other

scenarios.

3 Source: California State University. 1997. ASCII - ISO 8859-1 (Latin-1) Table with HTML Entity Names.
http://web.calstatela.edu/faculty/jchen13/Docs/CS120/Lectures/ASCIITable_with_HTML_Entity_Names.ht

m

4 Note that not every non-ASCII character is an IDN.
5 For current status, see http://tools.ietf.org/html/rfc6055#section-3
6 ASCII Compatible Encoding (ACE) prefix is used to distinguish Punycode-encoded labels from ordinary ASCII
labels.
7 RFC: Request for Comments. See the Glossary of term in Part 4 of this document for more information.

http://unicode.org/charts
http://web.calstatela.edu/faculty/jchen13/Docs/CS120/Lectures/ASCIITable_with_HTML_Entity_Names.htm
http://web.calstatela.edu/faculty/jchen13/Docs/CS120/Lectures/ASCIITable_with_HTML_Entity_Names.htm
http://tools.ietf.org/html/rfc6055#section-3

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 9

Email

Addresses and Email Address Internationalization (EAI)

Email addresses contain two parts:

1. A local part (the username, before the “@” character)

2. A domain (after the “@” character)

The domain part can contain any TLD, including a new TLD. Both portions may be Unicode U-labels.

NOTE: An additional format, IDN-Style Email Addresses, will be discussed below.

Email Address Internationalization (EAI) requires the use of Unicode in all parts of the email address.

Each of the examples above could be expressed as EAI, and this is the preferred format.

Examples of (imaginary) IDNs

example.みんな (Punycode encoding = example.xn--q9jyb4c)

大坂.info (Punycode encoding = xn--uesx7b.info)

みんな. 大坂 (Punycode encoding = xn--q9jyb4c.xn--uesx7b)

To learn more, see the IDN FAQ: http://unicode.org/faq/idn.html

Examples of (imaginary) Email Addresses including IDNs

user@example.みんな

user@大坂.info

用戶@example.lawyer

 (Uses internationalized TLD)

(Uses internationalized 2nd level domain)

(Uses internationalized user name and new gTLD)

http://unicode.org/faq/idn.html

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 10

Dynamic Link Generation (Linkification)

Modern software, such as popular word processing or spreadsheet applications, sometimes allows a

user to create a hyperlink simply by typing in a string that looks like a web address, email address or

network path. For example, typing “www.icann.org” into an email message may result in a clickable

link to http://www.icann.org being automatically created if the app treats “www.” as a special

prefix or “.org” as a special suffix.

Linkification should work consistently for all well-formed web addresses, email addresses or network

paths.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 11

Part 2: Universal Acceptance in Action

Five Criteria of Universal Acceptance
As described in the section, Universal Acceptance is the state where all valid domain names and email

addresses are accepted, validated, stored, processed and displayed correctly and consistently by all Internet-

enabled applications, devices and systems. These five criteria are described below.

1. Accept8

Accepting occurs whenever an email address or a domain name is received as a

string of characters from a user interface, from a file, or from an API used by a

software application or online service.

Applications and services allow domain names and email addresses to be:

• Entered into user interfaces, AND/OR

• Received from other applications and services via APIs

2. Validate9

Validation may occur in many places whenever an email address or a domain

name is either received or emitted as a string of characters by an application or

online service.

Validation is intended to ensure that the entered information is either valid or at

least definitely not invalid. In other words, validation ensures the syntax

correctness of the given information.

For domain names and email addresses, many programmers have been using some

heuristics (for example, checking that a TLD has the “correct” number of

characters, or that the characters are from the ASCII character set). However, these

heuristics are no longer applicable because the Internet is changing:

• Domain names and email addresses can now include Unicode (non-ASCII)

characters

• The list of TLDs is growing

• A TLD can be up to 63 characters long

3. Store

The Storage process occurs whenever an email address or a domain name is

stored as a string of characters in a database or file used by a software application

or online service.

Applications and services might require long-term and/or transient storage of

domain names and email addresses. Regardless of the lifetime of the data, it must

be stored in:

• RFC-defined formats, OR

• Alternate formats that can be easily translated to and from RFC-defined

formats (this is much less desirable)

8 Accepting is treated as distinct from Validating in this document. In practice, the abilities may overlap.

9 Accepting and Processing are treated as distinct from Validating in this document. In practice, the abilities

may overlap.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 12

Although RFCs require the use of UTF-8, other formats may be encountered in

legacy code. See the “Good Practices” section below.

4. Process10

Processing occurs whenever an email address or a domain name is used by an

application or service to perform an activity (for example, searching or sorting a

list), or transformed into an alternate format (such as storing ASCII as Unicode).

Processing means using domain names and email strings in a feature. Additional

validation may occur during processing. There is no limit to the number of ways

that domain names and email addresses could be processed (examples: “Identify

all the people associated with New Zealand because they have a name with a .nz

ccTLD”; “Identify all the pharmacists because they have a

user@example.pharmacy email address”; “Identify firewalls that might filter

DNS requests that don’t apply to their policies”).

5. Display

The Display process occurs whenever an email address or a domain name is

rendered within a user interface.

Displaying domain names and email addresses is usually straightforward when the

scripts used are supported in the underlying operating system and when the strings

are stored in Unicode. If these conditions are not met, application-specific

transformations may be required.

User Scenarios
The examples and definitions above may give the impression that Universal Acceptance is only about

computer systems and online services. The reality, however, is that it’s also about the people using those

systems and services.

Below are some examples of activities that require Universal Acceptance:

Registering a new

TLD

An organization adopts a “brand” TLD to offer its customers a differentiated

customer experience by providing email addresses in the format, customername

@example.brand.

Universal Acceptance means:

• Web apps accept these new “@example.brand” email addresses as

valid as they would with TLDs such as .com, .net, .org.

Accessing a gTLD A user accesses a website, whose domain name contains a new TLD, by typing an

address into a browser or clicking a link in a document.

Universal Acceptance means:

• Even though the TLD is new, any browser the user wishes to use displays

the web address in its native form and accesses the site as the user

10 Processing is treated as distinct from Validating in this document. In practice, the abilities may overlap.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 13

expects. The browser does not display Punycoded text to the user unless

it benefits the user in some way.

Using an email

address containing

a new gTLD as an

online identity

A user acquires an email address with the domain portion using a new gTLD, and

uses this email address as their identity for accessing their bank and airline loyalty

accounts.

Universal Acceptance means:

• Even though the domain used in the email address is new, the bank or

airline site accepts the address exactly as if it were an established TLD

such as .biz or .eu.

Accessing an IDN

A user accesses an IDN URL, by typing an address into a browser or clicking a link

in a document.

Universal Acceptance means:

• Even if the domain name contains characters different than the language

settings on the user’s computer, any browser the user wishes to use will

display the web address as expected and access the site successfully.

Using an

internationalized

email address for

email

A user has acquired multiple email addresses, some are internationalized (e.g.

īnfo@普遍接受-测试.世界).

Universal Acceptance means:

• The user can send to and receive from any email address and using any

email client.

Using an

internationalized

email address as

an online identity

A user acquires an EAI email address, and uses this email address as their identity

for accessing their bank and airline loyalty accounts.

Universal Acceptance means:

• The bank or airline site accepts the EAI identity exactly as if it were any

other email identity.

Dynamically

creating a

Hyperlink in an

Application

A user types a web address into a document or email message.

Universal Acceptance means:

• The rules used by the application to automatically generate a hyperlink

are the same even if the address is an EAI or contains a new TLD.

Developing an

Application

A developer writes an app that accesses web resources.

Universal Acceptance means:

• The tools used by the developers include libraries that enable Universal

Acceptance by supporting Unicode, IDNs and EAI.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 14

Nonconformance to Universal Acceptance Practices
The following are considered to be poor practice:

Displaying Punycoded text to the user without a corresponding user benefit.

For example, to show the mapping between a U-label and a A-label.

Requiring a user to enter Punycoded text when signing up for a new email address or requiring a user

to enter Punycoded text when signing up for a new hosted domain.

Validating the syntax of domain name or email address using out of date criteria or non-authoritative

online domain name resources.

 Using an outdated list of TLDs even though new TLDs are regularly being added.

Exposing internal use of Punycoded text to users.

For example, converting from EAI to an IDN-style email address when replying to an EAI user.

Treating some domain names as search terms rather than as domain names because the application

does not recognize them as such.

 Setting spam blockers to automatically block entire TLDs.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 15

Technical Requirements for UA Readiness

High level Requirements
An application or service that supports universal acceptance (UA):

1. Supports all domain names regardless of length or character set.

See RFC 5892.

2. Allows multiple character sets that are valid for domain names and email addresses.

That is, permits Unicode code points.

3. Can correctly render all code points in Unicode strings.

See RFC 3490.

4. Can correctly render right-to-left (RTL) strings such as those in Arabic and Hebrew.

For information about RTL scripts, see RFC 5893.

5. Can communicate data between applications and services in formats that support Unicode and

are convertible to/from UTF-8.

For information about UTF-8, see RFC 3629.

6. Offers public APIs that support Unicode & UTF-8.

7. Offers private APIs that support Unicode & UTF-8.

Private APIs apply only to inter-service calls by the same vendor.

8. Stores user data in formats that support Unicode and is convertible to/from UTF-8.

 Such conversions would be visible only to the product/service owner.

9. Supports all domain name strings in the authoritative ICANN TLD list and the community-

served Public Suffix List regardless of length or character set.

See https://newgtlds.icann.org/en/program-status/delegated-strings.

10. Can send email to and receive from recipients regardless of domain name or character set.

 See RFC 6530.

11. Treats EAI addresses the same way as their Punycoded equivalents (IDN email format).

Developer Considerations
Since many existing software systems contain hardcoded assumptions about domains and email addresses,

code changes may be required to recognize IDNs and new TLDs. This section discusses how developers can

incorporate code changes that will enable Universal Acceptance of all new TLDs.

https://tools.ietf.org/html/rfc5892
https://www.ietf.org/rfc/rfc3490.txt
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc3629
https://newgtlds.icann.org/en/program-status/delegated-strings
https://tools.ietf.org/html/rfc6530

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 16

A Guiding Principle for Achieving Universal Acceptance: Postel’s Law

In RFC 793, Jon Postel formulated the Robustness Principle, now known as Postel's Law, as an

implementation guideline for the then-new TCP. In computing, the Robustness Principle is a general

design guideline for software:

"Be conservative in what you do, be liberal in what you accept from others."

In other words, be conservative in what you send and be liberal in what you accept. This is also a good

approach when dealing with the vagaries of Universal Acceptance currently implemented in the

ecosystem.

Good Practices for Developing and Updating Software to Achieve UA-Readiness

Accept

Always offer Unicode equivalents.

Users should be allowed, but not required, to enter ASCII Compatible Encoded (or “Punycoded”)

text in place of its Unicode equivalent. However, Unicode should be shown by default, with

Punycoded text only shown to the user only when it provides a benefit.

!
Don’t generate IDN-Style email addresses, but do be able to handle them if presented by someone

else’s software.

Any user interface element requiring a user to type a domain name or email address must support

Unicode, labels up to 63 characters, and domain name strings up to 253 characters.

• See RFC 1035.

Validate

Validate only to the minimum extend necessary.

Validate only if it is required for the operation of the application or service. This is the most

reliable way to ensure that all valid domain names are accepted into your systems.

 Recognize that syntactically correct inputs may not represent domain names or email addresses

currently in use on the Internet.

!

If you must validate, consider the following:

• Verify the TLD portion of a domain name against an authoritative table. Examples of some

authoritative tables that you can use are:

o http://www.internic.net/domain/root.zone

o http://data.iana.org/TLD/tlds-alpha-by-domain.txt

See also: https://www.icann.org/en/system/files/files/sac-070-en.pdf

• Query the domain name against the DNS

o Consider using the GETDNS API (http://getdnsapi.net/)

• Require repeated entry of an email address to preclude typing errors

https://tools.ietf.org/html/rfc793
https://en.wikipedia.org/wiki/Jon_Postel
https://en.wikipedia.org/wiki/Computing
https://tools.ietf.org/html/rfc1035
http://www.internic.net/domain/root.zone
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://www.icann.org/en/system/files/files/sac-070-en.pdf
http://getdnsapi.net/

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 17

• Validate the characters in labels only to the extent of determining that the U-label does

not contain "DISALLOWED" code points or code points that are unassigned in its version

of Unicode

o See RFC 5892

• Limit validation of labels itself to a small number of whole-label rules defined in the RFCs

o See RFC 5894

• If a string resembling a domain name contains the Arabic full stop character “۔” (U+06D4),

or the ideographic full stop character “。” (U+3002), convert it to the full stop “.”

(U+002E).

• Do ensure that the product or feature handles numbers correctly

o For example: ASCII numerals and Asian ideographic number representations

should all be treated as numbers

Store

 Applications and services should support the appropriate Unicode standards.

Information should be stored in the UTF-8 (Unicode Transformation Format) whenever possible.

Some systems may require support for UTF-16 as well, but generally UTF-8 is preferred. UTF-7 and

UTF-32 should be avoided.

!

Consider all end-to-end scenarios before converting A-Labels (Punycode) to U-Labels and vice

versa when storing.

It may be desirable to maintain only U-Labels in a file or database, because it simplifies searching

and sorting. However, conversion may have implications when interoperating with older, non-

Unicode-enabled applications and services. Consider storing and indexing both formats.

Clearly mark email addresses and domain names during storage for easier access.

Instances where email addresses and domain names have been filed under the “author” field of a

document or “contact info” in a log file have led to the loss of the original address.

If you don’t store in Unicode, you must be able to match strings in multiple formats.

For example, a search for example.みんなshould also find example.xn--q9jyb4c.

Process

 Ensure all server responses have Unicode specified in the content type.

Specify Unicode in the web server http header and directly in a web file.

• Every web file should include the UTF-8 charset

• It is important to ensure that the encoding is specified on every response

https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5894

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 18

!

Consider all end-to-end scenarios before converting A-Labels (Punycode) to U-Labels and vice

versa during processing.

It may be desirable to maintain only U-Labels in a file or database as it simplifies searching and

sorting. However, conversion may have implications when interoperating with older, non-

Unicode-enabled applications and services. Consider storing in both formats.

Ensure that the product or feature handles sort order, searches, and collation according to

locale/language specifications, and that it addresses multilanguage searching and sorting.

Don’t use URL-encoding for domain names:

• example.みんな is correct

• example.%E3%81%BF%E3%82%93%E3%81%AA is not correct

Since the Unicode standard is continually expanding, code points not defined when the application

or service was created should be checked to ensure they will not “break” the user experience.

Missing fonts in the underlying operating system may result in non-displayable characters

(frequently the “”character is used to represent these), but this situation should not result in a

fatal crash.

 Use supported Unicode-enabled APIs.

Use the latest Internationalized Domain Names in Applications (IDNA) Protocol and Tables

documents for IDNs:

• RFC 5891

• RFC 5892

 Process in UTF-8 format wherever possible.

Upgrade applications and servers/services together.

If the server is Unicode and client is non-Unicode, or vice versa, the data will need to be converted

to each code page every time the data travels between server and client.

Perform code reviews to avoid buffer overflow attacks.

When doing character transformation, text strings may grow or shrink substantially.

Display

Display all Unicode code points that are supported by the underlying operating system.

If an application maintains its own font sets, comprehensive Unicode support should be offered to

the collection of fonts available from the operating system.

When developing an app or a service consider the languages supported and make sure operating

systems and applications cover those languages.

 Convert non-Unicode data to Unicode before display.

https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5892

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 19

For example, the end user should see “example.みんな” as opposed to “example.xn--

q9jyb4c”. (This conversion is an example of UA-ready processing).

Display Unicode by default.

Display Punycoded text to the user only when it provides a benefit.

!

Be aware that mixed-script addresses will become more common.

• Some Unicode characters may look the same to the human eye, but different to

computers

• Don’t assume that mixed-script strings are intended for malicious purposes, such as

phishing

• If the user interface calls the strings to the user’s attention, be sure that it does so in a

way which is not prejudicial to users of non-Latin scripts

Learn more about Unicode Security Considerations at: http://unicode.org/reports/tr36

Use Unicode IDNA Compatibility Processing in order to match user expectations.

To learn more, go to: http://unicode.org/reports/tr46

Be aware of unassigned and disallowed characters for domain names.

• See RFC 5892

Unicode

 Use supported Unicode-enabled APIs.

Don’t build your own APIs for:

• String format conversions

• Determining which script comprises a string

• Determining if a string contains a mix of scripts

• Unicode normalization/decomposition

Don’t use UTF-7 or UTF-32.

• UTF-7 is generally not used as a native representation within applications as it is very

awkward to process. Despite its size advantage over the combination of UTF-8 with either

quoted-printable or base64, the Internet Mail Consortium recommends against its use.

• The main disadvantage of UTF-32 is that it is space inefficient, using four bytes per code

point. Non-BMP characters are so rare in most texts[citation needed], they may as well

be considered non-existent for sizing issues, making UTF-32 up to twice the size of UTF-

16 and up to four times the size of UTF-8.

 Use Unicode in cookies so they can be read correctly by applications.

Use IDNA 2008 Protocol and Tables documents:

• RFC 5891

http://unicode.org/reports/tr36
http://unicode.org/reports/tr46
https://tools.ietf.org/rfc/rfc5892.txt
http://tools.ietf.org/html/rfc5891

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 20

• RFC 5892

 Don’t use IDNA 2003; in nearly all cases it has been superseded by IDNA 2008.

 Do not automatically assume that external APIs can consume data that has been NFKC11 converted.

!

Maintain IDNA and Unicode tables that are consistent with regard to versions.

For example, unless the application actually executes the classification rules in the Tables

document (RFC 5892), its IDNA tables must be derived from the version of Unicode that is

supported more generally on the system. As with registration, the tables do not need to reflect

the latest version of Unicode, but they must be consistent.

!
Validate the characters in labels only to the extent of determining that the U-label does not contain

“DISALLOWED”12 code points or code points that are unassigned in its version of Unicode.

Limit validation of labels itself to a small number of whole-label rules:

• No leading combining marks

• Bidirectional conditions are met if right-to-left characters appear

• Any contextual rules that are associated with joiner characters (and CONTEXTJ13

characters more generally) are tested

!

Don’t use UTF-16 except where it is explicitly required (as in certain Windows APIs).

When using UTF-16, note that 16 bits can only contain the range of characters from 0x0 to 0xFFFF,

and additional complexity is used to store values above this range (0x10000 to 0x10FFFF). This is

done using pairs of code units known as surrogates. If handling of surrogate pairs is not thoroughly

tested, it may lead to tricky bugs and potential security holes.

Linkification

If a string resembling a domain name contains the Arabic full stop character “۔” (U+06D4), or the

ideographic full stop character “。” (U+3002), convert it to the full stop “.” (U+002E).

General

Use authoritative resources to validate domain names.

Do not make heuristic assumptions, such as “all TLDs are 2, 3, 4, or 6 characters in length”.

11 NFKC (Normalization Form Compatibility Composition): Characters are decomposed by compatibility, then

recomposed by canonical equivalence. See: http://unicode.org/reports/tr15

12 DISALLOWED: Code points that should not be included in IDNs. See: https://tools.ietf.org/html/rfc5892

13 CONTEXTJ: Contextual Rule for Join controls. See: https://tools.ietf.org/html/rfc5892

http://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892
http://unicode.org/reports/tr15
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 21

Ensure that the product or feature handles numbers correctly.

For example, ASCII numerals and Asian ideographic number representations should all be treated

as numbers.

!

Look for mail addresses in unexpected places:

• Artist/author/photographer/copyright metadata

• Font metadata

• DNS contact records

• Binary version information

• Support information

• OEM contact information

• Registration, feedback, and other forms

!

Look for potential IRI14 paths in unexpected places:

• Single-label machine names regardless of loaded system codepage

• Fully-qualified machine names regardless of loaded system codepage

 Use GB18030 (China) for Chinese language support15 in addition to UTF-8.

!

Restrict the code points allowed when generating new domain names and email addresses:

All products that use email addresses must accept internationalized email addresses, allowing

characters > U+007f. That is, no characters > U+007f are disallowed. However, an app or service

need not allow all of these characters when a user creates a new IDN or email address. Use only

this list of allowed characters for IDNs: http://unicode.org/reports/tr36/idn-chars.txt

Preventing certain IDNs or email addresses from being created in the first place can mitigate some

likely security and accessibility concerns. (NOTE: Postel’s Law would still require software to accept

such strings if presented.)

!

Be aware that Universal Acceptance cannot always be measured through automated test cases

alone.

For example, testing how an app or protocol handles network resource may not always be possible

and sometimes it is best to verify the compliance through functional spec review and design

review.

!

Don’t automatically assume that because a component does not directly call name-resolution APIs,

or directly use email addresses, it does not mean that they do not affect it.

Understand how network names are obtained by the component; it is not always through user

interaction. The following are some examples on how the component can get a network name:

• Group policy

• LDAP query

• Configuration files

14 IRI: Internationalized Resource Identifiers. See: https://www.ietf.org/rfc/rfc3987.txt
15 GB 18030-2000 is a Chinese government standard that specifies an extended code page for use in the
Chinese market. See: http://icu-project.org/docs/papers/unicode-gb18030-faq.html

http://unicode.org/reports/tr36/idn-chars.txt
https://www.ietf.org/rfc/rfc3987.txt
http://icu-project.org/docs/papers/unicode-gb18030-faq.html

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 22

• Windows Registry

• Transferred to/from another component/feature

Perform code reviews to avoid buffer overflow attacks.

• In Unicode, strings may expand in casing: Fluß → FLUSS → fluss

• When doing character conversion, text may grow or shrink substantially

Authoritative Sources for Domain Names

DNS Root Zone

There are a few options for the authoritative list of TLDs. The first option is the DNS root zone itself. It is

DNSSEC-signed, so the list is properly authenticated. You can obtain the root zone from any of the following

links:

• http://www.internic.net/domain/root.zone

• http://www.dns.icann.org/services/authoritative-dns/index.html

• http://data.iana.org/TLD/tlds-alpha-by-domain.txt

Public Suffix List

The Public Suffix List (PSL), managed by volunteers of the Mozilla Foundation, provides an accurate list of

domain name suffixes. This list is a set of DNS names or wildcards concatenated with dots and encoded using

UTF-8. If you need to use the PSL as an authoritative source for domain names, your software must regularly

receive PSL updates. Do not bake static copies of the PSL into your software with no update mechanism. You

can use the link below to make your app download an updated list periodically. The list gets updated once per

day from Github:

• https://publicsuffix.org/list/public_suffix_list.dat

http://www.internic.net/domain/root.zone
http://www.dns.icann.org/services/authoritative-dns/index.html
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://publicsuffix.org/list/public_suffix_list.dat

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 23

Other Challenges

General
Variable encoding

of IDNs

In some applications, IDNs are encoded:

• In Punycode, as per IDNA, if the name is identified as an Internet name,

BUT

• In UTF-8, if the name is identified as a name on the local area network

(“intranet”)

Mechanism to

detect and convert

charsets

Some older email applications were encoded in a local code page and did not have

a set mechanism for detecting and converting charset as needed. This was

especially true for the email header (TO, CC, BCC, Subject).

Failure to handle

non-DNS protocols

Some applications that do IDNA (for example, IE7+) break for non-DNS protocols.

This could affect accessing resources using non-DNS protocols.

Mechanism to

manage multiple

email addresses

into a single user

identity

When a user is aliasing multiple email addresses it may be tricky to manage these

addresses as a single user identity.

Email programs can direct traffic to such aliases to the same mailbox, but the

application may still perceive these emails to pertain to different identities.

Tip for software developers

When allowing a user to generate a domain name or email address, consider avoiding the use of

visually confusing characters to prevent homograph attacks. Use only this list of allowed characters

for IDN: http://unicode.org/reports/tr36/idn-chars.txt

IDN-Style Email and Why It Is Not the Same as EAI
EAI is defined as using Unicode only; A-Labels (Punycode) are not allowed. Nevertheless, developers have

sometimes adapted email software and services to handle IDN-Style email addresses rather than make a full

conversion to Unicode.

Because IDNs can be Punycode encoded, some existing software allows the IDN portion of an email address

to be represented in ASCII or Unicode. For example, some software will treat these two “IDN-Style email”

addresses equivalently for all purposes (sending, receiving, and searching):

However, some software will not robustly treat these addresses as equivalent, even though are both valid,

because there is no requirement for software to process an A-label (i.e. “xn--q9jyb4c”) into its U-label

equivalent (i.e. “みんな”) before comparing. This can result in unpredictable user experience. The user

Not all software will treat these two IDN-Style emails as functionally equivalent

user@example.みんな = user@example.xn--q9jyb4c

http://unicode.org/reports/tr36/idn-chars.txt

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 24

experience may become especially confusing if some software converts U-labels into A-labels for

“compatibility”; as messages are replied-to or forwarded, the addresses which are visibly different to a user,

or which fail to search and sort as expected, may increase.

In the example below, some software may attempt to convert even the local part of the email address using

Punycode, creating something that looks like an A-LABEL in the local part of the address. This is not allowed

under the existing RFCs, and is very likely to result in failures to receive email by certain systems and to

generate searching and sorting difficulties as explained above.

Robust UA-ready software and services may be able to handle and treat all these formats identically, even

those which are not RFC-compliant. Nevertheless, UA-ready software should not generate true EAI email

addresses only.

Linkification and Its Challenges
Modern software sometimes allows a user to automatically create a hyperlink simply by typing in a string that

looks like a web address, email name or network path. For example, typing “www.icann.org” into an email

message may result in a clickable link to http://www.icann.org being automatically created if the

application treats “www.” as a special prefix or “.org” as a special suffix.

Linkification should work consistently for all well-formed web addresses, email names or network paths.

Linkification is the action where an application accepts a string and dynamically determines whether it should

create a hyperlink to an Internet Location (URL) or an email address (mailto:)

Linkification uses algorithms and rules created by software developers to determine whether a string should

be deemed a link – or not. Related to this is how people can identify a string as a domain name. While

browsers, email clients and word processors are obvious places, there are many more applications that make

these decisions.  

Good Practice Recommendations

1. Attempt to linkify based on explicit protocol prefixes (e.g. “http://”, ftp://”, “mailto:”) but only complete
the action if the rest of the string is well formed

Example String Expected Behavior/ Result

example.com No linkification because protocol is absent and not inferred.

http://example.com Create hyperlink because protocol is explicit

http:example.com No linkification because of bad syntax (missing //)

Never convert the local part of an email address using Punycode

 用戶@example.みんな

 xn--youq53b@example.xn--q9jyb4c

http://www.icann.org/
mailto:)

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 25

Example String Expected Behavior/ Result

http://example.a No linkification because ICANN Policies require TLD to be at least two

characters. NB: This syntax could be supported within an internal

network.

http://example..ab No linkification because of bad syntax (consecutive dots)

http:// 普遍接受-测试.世界 Create hyperlink because protocol is explicit.

2. Attempt to linkify based on implicit protocol prefixes (e.g. “www” infers “http://www”)

Example String Expected Behavior/ Result

www.example.com Create hyperlink because protocol is implied16

label@example.com Create mailto: label@example.com because protocol is implied.

3. Map the Ideographic Full Stop “。” (U+3002) and the Arabic full stop character “۔” (U+06D4), to Full

Stop “.” (U+002E) (e.g. http://田中。com => http://田中.com) if string is otherwise well formed.

4. If TLDs are used as a ‘special suffix’ to determine linkability, then all TLDs must be included. A list of
valid TLDs should be updated dynamically on a frequent basis.

16 Note: it might be the case that the actual website requires that end users type https:// instead of http://. If
this is the case, then the hyperlink may not resolve or may return an error page.

http://example.a/
http://example..ab/
http://www/
mailto:label@example.com
mailto:label@example.com

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 26

Part 3: Advanced Topics

Complex Scripts
The details of complex scripts may not be of interest to those who are not developers creating their own string

parsing libraries. Nevertheless, a summary is included here to ensure that all readers have sufficient

awareness to recognize code bugs related to these scripts when encountered in user experiences.

Right to Left Languages and Unicode Conformance

Most scripts display characters from left to right when text is presented in horizontal lines. However,

there are also several scripts, such as Arabic or Hebrew, where the ordering of horizontal text in

display is from right to left. The text can also be bidirectional (left to right – right to left) when a right-

to-left script uses digits that are written from left to right or when it uses embedded words from

English or other scripts.

Challenges and ambiguities can occur when the horizontal direction of the text is not uniform. To

solve this issue, there is an algorithm to determine the directionality for bidirectional Unicode text.

There is a set of rules that should be applied by the application to produce the correct order at the

time of display which are described by the Unicode Bidirectional Algorithm. We generally refer to

this as the “Bidi algorithm”.

The Bidi Algorithm

The Bidi algorithm describes how software should process text that contains both left-to-right (LTR)

and right-to-left (RTL) sequences of characters. The base direction17 assigned to the phrase will

determine the order in which text is displayed.

To know if a sequence is left-to-right or right-to-left, each character in Unicode has an associated

directional property. Most letters are strongly typed (strong characters) as LTR (left-to-right). Letters

from right-to-left scripts are strongly typed as RTL (right-to-left). A sequence of strongly-typed RTL

characters will be displayed from right to left. This is independent of the surrounding base direction.

For example :

exampleLTR) (- مثال (RTL).

Text with different directionality can be mixed in line. In such cases, the Bidi algorithm produces a

separate directional run out of each sequence of contiguous characters with the same directionality.

Spaces and punctuation are not strongly typed as either LTR or RTL in Unicode because they may be

used in either type of script. They are therefore classified as neutral or weak characters. Weak

characters are those with vague directionality. Examples of this type of character include:

• European digits

• Eastern Arabic-Indic digits

• Arithmetic symbols, and currency symbols

• Punctuation symbols that are common to many scripts, such as the colon, comma, full-stop,

and the no-break-space

The directionality of neutral characters is indeterminate without context. Some examples include:

17 In HTML the base direction is either inherited from the default direction of the document, which is left-to-
right, or explicitly set by the nearest parent element that uses the di r attribute.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 27

• Tabs

• Paragraph separators

• Most other whitespace characters

When a neutral character is between two strongly typed characters that have the same directional

type, it will also assume that directionality. For example, a neutral character between two RTL

characters will be treated as a RTL character itself, and will have the effect of extending the

directional run:

 نطاق.مثال •

Even if there are several neutral characters between the two strongly typed characters, they will all

be treated in the same way.

When a space or punctuation falls between two strongly typed characters that have different

directionality, the neutral character (or characters) will be treated as if they have the same

directionality as the prevailing base direction. For example:

• example. مثال

Unless a directional override is present numbers are always encoded (and entered) big-endian18, and

the numerals rendered LTR. The weak directionality only applies to the placement of the number in

its entirety.

To see the Bidi algorithm in detail, go to: http://unicode.org/reports/tr9/tr9-11.html

The Bidi Rule for Domain Names

A Bidi domain name is one that contains at least one RTL label. There is a rule that determines the

conditions to be met for the labels in Bidi domain names. This rule can be found on Section 2 of RFC

5893: https://tools.ietf.org/html/rfc5893

 Joiners

Some languages use alphabetic scripts in which single phonemes are written using two characters

called a digraph. In other words, a digraph is a group of two successive letters that represent a single

sound (or phoneme).

Some digraphs are fully joined as ligatures. In writing and typography, a ligature happens where two

or more graphemes or letters are joined as a single glyph. An example is the ampersand character

(&), which evolved from the adjoined Latin letters e and t (“et” means “and”).

18 “Big-endian and little-endian are terms that describe the order in which a sequence of bytes are stored in
computer memory. Big-endian is an order in which the ‘big end’ (most significant value in the sequence) is
stored first (at the lowest storage address). Little-endian is an order in which the ‘little end’ (least significant
value in the sequence) is stored first.”
Source: http://searchnetworking.techtarget.com/definition/big-endian-and-little-endian

Examples of diagraphs in English

ch (as in church)

ph (phone)

th (then)

th (think)

sh (shoe)

http://unicode.org/reports/tr9/tr9-11.html
https://tools.ietf.org/html/rfc5893
http://searchstorage.techtarget.com/definition/byte
http://searchnetworking.techtarget.com/definition/big-endian-and-little-endian

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 28

If ligatures and digraphs have the same interpretation in all languages that use a given script, Unicode

normalization generally resolves the differences and makes them match. When they have different

interpretations, matching must use alternative methods, likely chosen at the registry level, or users

must be educated to understand that matching will not occur. An example of different interpretation

can be found in Section 4.3 of RFC 5894: https://tools.ietf.org/html/rfc5894

The Unicode Consortium lists two main strategies to determine the joining behavior of a particular

character after applying the Bidi algorithm:

• “When shaping, an implementation can refer back to the original backing store to see if

there were adjacent ZWNJ or ZWJ19 characters.

• Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band character

property associated with those adjacent characters, so that the information does not

interfere with the Bidi algorithm and the information is preserved across rearrangement of

those characters. Once the Bidi algorithm has been applied, that out-of-band information

can then be used for proper shaping.”20

In the absence of care by registries about how strings that could have different interpretations under

IDNA2003 and the current specification are handled, it is possible that the differences could be used

as a component of name-matching or name-confusion attacks. Such care is therefore appropriate.

To learn more about joiners, see Section 4.3 of RFC 5894: https://tools.ietf.org/html/rfc5894

Homoglyph and Confusingly Similar Characters

Homoglyphs are characters that, due to similarities in size and shape, might appear identical at first

glance.

To prevent confusingly looking domain names being registered, registries can use the “homoglyph

bundling” procedure.21

Homoglyph bundling is when you register an IDN and the registration system automatically bundles

all the homoglyphs of that name (if there are any). This means that several domain names are

bundled at one time, and none of the other domain names in that bundle can be registered.

Homoglyph bundling is a good practice for registries to avoid possible phishing practices that intend

to trick the user with visually confusing characters.

To learn more about Unicode security mechanisms for confusable detection, go to:

19 To learn more about ZWNJ/ZWJ, go to: http://www.unicode.org/L2/L2005/05307-zwj-zwnj.pdf
20 Source: Mark Davis, Aharon Lanin, Andrew Glass. 2015. Unicode. http://unicode.org/reports/tr9

21 https://www.icann.org/resources/pages/idn-guidelines-2011-09-02-en

Examples of homoglyphs

Cyrillic character a

Latin character a

=

=

Unicode number 0430

Unicode number 0061

https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5894
http://www.unicode.org/L2/L2005/05307-zwj-zwnj.pdf
http://unicode.org/reports/tr9

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 29

• http://www.unicode.org/reports/tr39/#Confusable_Detection

To see a list of homoglyphs, go to:

• http://homoglyphs.net

To learn more about confusingly similar characters and good practice, see:

• M3AAWG Unicode Abuse Overview and Tutorial

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf

• M3AAWG Best Practices for Unicode Abuse Prevention

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf

Normalization and Case Folding

Normalization

Unicode Normalization helps to determine whether any two Unicode strings are equivalent to each

other. Some characters can be represented in Unicode by several code sequences. This is called

Unicode equivalence. Unicode provides two types of equivalences:

• Canonical (NFD)

• Compatibility (NFK)

Sequences representing the same character are called canonically equivalent. These sequences have

the same appearance and meaning when printed or displayed. For example:

Compatibility equivalents are sequences which can have different appearances, but in some

contexts the same meaning. It is a weaker type of equivalence between characters or sequences of

characters.

Examples of canonically equivalent characters

U+006E (Latin lowercase “n”) followed by U+0303 (the

combining tilde “◌̃”)

= ñ

U+00F1 (lowercase letter “ñ” of the Spanish alphabet) = ñ

Examples of compatibility equivalent characters

U+FB00 (the typographic ligature “ff”) = ff

U+0066 U+0066 (two Latin “f” letters) = ff

http://www.unicode.org/reports/tr39/#Confusable_Detection
http://homoglyphs.net/
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 30

In the example above, the code point U+FB00 is defined to be compatible, but not canonically

equivalent to the sequence U+0066 U+0066. Sequences that are canonically equivalent are also

compatible, but the opposite is not necessarily true.

To avoid interoperability problems arising from the use of canonically equivalent, yet different,

character sequences, the W3C recommends using Normalization Form C22 for all content.

To see a list of all characters that may change in any of the Normalization Forms, go to:

http://www.unicode.org/charts/normalization

Some other points to note:

• Only strings NOT transformed by NFKC23 are valid.

• When two applications share Unicode data, but normalize them differently, errors and data

loss can occur.

• Normalization Forms must remain stable over time. In other words, a string must remain

normalized under all future versions of Unicode (backward compatibility).

Tip for software developers

Don’t normalize by converting to uppercase, or ignoring non-spacing characters, because this may

also make sorting, data copy, data import and export, data retrieval by client applications rather

difficult and may result in data loss or corruption.

To learn more about Normalization Forms go to: http://www.unicode.org/reports/tr15

Case Folding

Case folding is the process of making two texts, which differ in case but are otherwise “the same”,

identical. Mapping [a-z] to [A-Z] works for most simple ASCII-only text documents. However, it begins

to break down with languages that use additional characters.

Unicode defines the default case fold mapping for each Unicode code point. There are common and

full case fold mappings:

• Common fold mappings are those that have a simple, straightforward mapping to a single

matching (mainly lowercase) code point

• Full fold mappings are those that would normally require more than one Unicode character

One important consideration, according to the W3C,24 is whether the values are restricted to the

ASCII subset of Unicode or if the vocabulary permits the use of characters (such as accents on Latin

letters or a broad range of Unicode including non-Latin scripts) that potentially have more complex

case folding requirements.25

22 NFC: Canonical Decomposition, followed by Canonical Composition.

23 NFKC: Compatibility Decomposition, followed by Canonical Composition.

24 W3C: The World Wide Web Consortium (W3C) is an international community where Member organizations,

a full-time staff and the public work together to develop Web standards. See: https://www.w3.org

25 Source: A Phillips. 2015. Character Model for the World Wide Web: String Matching and Searching.
https://www.w3.org/TR/charmod-norm

http://www.unicode.org/charts/normalization
http://www.unicode.org/reports/tr15
https://www.w3.org/Consortium/Member/List
https://www.w3.org/People/
https://www.w3.org/standards/
https://www.w3.org/
https://www.w3.org/TR/charmod-norm

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 31

Tip for software developers

 Consider Unicode Normalization in addition to case folding.

To learn more about Unicode normalization, see:

• http://www.w3.org/TR/charmod-norm

• http://unicode.org/reports/tr15

For recommendations about case folding, go to:

• https://www.w3.org/International/wiki/Case_folding

http://www.w3.org/TR/charmod-norm
http://unicode.org/reports/tr15
https://www.w3.org/International/wiki/Case_folding

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 32

Part 4: Glossary and Other Resources

Glossary
A-label The ASCII-compatible encoded (ACE) representation of an internationalized

domain name, e.g. how it is transmitted internally within the DNS protocol. A-

labels always commence with the prefix “xn--”. Contrast with U-label.

ACE prefix ASCII Compatible Encoding Prefix.

ASCII Characters American Standard Code for Information Interchange. These are characters from

the basic Latin alphabet together with the European-Arabic digits. These are also

included in the broader range of "Unicode characters" that provides the basis for

IDNs.

API An Application Programming Interface (API) is a set of routines, protocols, and

tools for building software and applications. An API may be for a web based

system, operating system, or database system, and it provides facilities to develop

applications for that system using a given programming language.

Codespace Range that define the lower and upper bounds for an encoding.

Code Points A code point or code position is any of the numerical values that make up the code

space. They are used to distinguish both, the number from an encoding as a

sequence of bits, and the abstract character from a particular graphical

representation (glyph).

DNS Root Zone The root zone is the central directory for the DNS, which is a key component in

translating readable host names into numeric IP addresses.

EAI Email Address Internationalization is an email address that requires the use of

Unicode in all parts of the email address.

IANA Internet Assigned Numbers Authority. Its functions include:

• Maintenance of the registry of technical Internet protocol parameters

• Administration of certain responsibilities associated with Internet DNS

root zone

• Allocation of Internet numbering resources

ICANN The Internet Corporation for Assigned Names and Numbers (ICANN) is an

internationally organized, non-profit corporation that has responsibility for

Internet Protocol (IP) address space allocation, protocol identifier assignment,

generic (gTLD) and country code (ccTLD) Top-Level Domain name system

management, and root server system management functions.

IDN Internationalized Domain Names. IDNs are domain names that include characters

used in the local representation of languages that are not written with the twenty-

six letters of the basic Latin alphabet “a-z”, the numbers 0-9, and the hyphen “-“.

IDNA Internationalized Domain Names in Applications.

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 33

IDN ccTLD Country Code Top-level Domain that includes characters used in the local

representation of languages that are nor written with the twenty-six letters of the

basic Latin alphabet “a-z”. Examples:

• .рф (Russia)

 (Egypt) .صر •

 (Saudi Arabia) .السعودية •

IETF The Internet Engineering Task Force (IETF) is a large open international

community of network designers, operators, vendors, and researchers concerned

with the evolution of the Internet architecture and the smooth operation of the

Internet. It is open to any interested individual. The IETF develops Internet

Standards and in particular the standards related to the Internet Protocol Suite

(TCP/IP).

Language The method of human communication, either spoken or written, consisting of the

use of words in a structured and conventional way.

Punycode It is an algorithm to represent Unicode with the limited character subset of ASCII

supported by the Domain Name System. Punycode is intended for the encoding

of labels in the Internationalized Domain Names in Applications (IDNA)

framework.

Registrar An organization where domain names are registered by users. The registrar keeps

records of the contact information and submits the technical information to a

central directory known as the “registry”.

Registry The authoritative, master database of all domain names registered in each Top

Level Domain.

RFC A Request for Comments (RFC) is a formal document from the Internet

Engineering Task Force (IETF) that is the result of committee drafting and

subsequent review by interested parties.

Script The collection of letters or characters used in writing, representing the sounds of

a language.

Second-level

domain name

In the Domain Name System (DNS) hierarchy, a second-level domain (SLD or 2LD)

is a domain that is directly below a top-level domain (TLD). For example, in

example.com, example is the second-level domain of the .com TLD.

U-label A "U-label" is an IDNA-valid string of Unicode characters including at least one

non-ASCII character. Conversions between U-labels and A-labels are performed

according to the Punycode specification [RFC3492].

UA-ready Software

or UA-Readiness

Universal Acceptance Ready Software. It is a software that has the ability to

Accept, Store, Process, Validate and Display all Top Level Domains equally and all

IDNs, hyperlink and email addresses equally.

Unicode A universal character encoding standard. It defines the way individual characters

are represented in text files, web pages, and other types of documents. Unicode

was designed to support characters from all languages around the world. It can

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 34

support roughly 1,000,000 characters and supports up to 4 bytes for each

character. See: http://unicode.org

UTF Unicode Transformation Format. It is a way of transforming Unicode code points

into a stream of bytes. UTF-8 is the preferred UTF for handling IDN and EAI. UTF-

8 converts Unicode to 8-bit bytes.

M3AAWG The Messaging, Malware and Mobile Anti-Abuse Working Group (M3AAWG) is

where the industry comes together to work against botnets, malware, spam,

viruses, DoS attacks and other online exploitation. See:

https://www.m3aawg.org/

W3C The World Wide Web Consortium (W3C) is an international community where

Member organizations, a full-time staff, and the public work together to develop

Web standards. See: https://www.w3.org/

ZWJ Zero-Width Joiner is non-printing character used in the computerized typesetting

of some complex scripts such as the Arabic script or any Indic script. When placed

between two characters that would otherwise not be connected, a ZWJ causes

them to be printed in their connected forms.

ZWNJ Zero-Width Non-Joiner is a non-printing character used in the computerization of

writing systems that make use of ligatures. When placed between two characters

that would otherwise be connected into a ligature, a ZWNJ causes them to be

printed in their final and initial forms, respectively. This is also an effect of a space

character, but a ZWNJ is used when it is desirable to keep the words closer

together or to connect a word with its morpheme.

For a complete ICANN glossary, go to: https://www.icann.org/resources/pages/glossary-2014-02-03-en

RFCs

PUNYCODE RFCs

RFC 3492 Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in

Applications (IDNA)

RFC 3492 describes Punycode as:

"a simple and efficient transfer encoding syntax designed for use with

Internationalized Domain Names in Applications (IDNA)"

Punycode transforms uniquely and reversibly a Unicode string into an ASCII string. This RFC

defines a general algorithm called Bootstring. This algorithm allows a string of basic code

points to uniquely represent any string of code points drawn from a larger set.

https://tools.ietf.org/html/rfc3492

IDN RFCs

http://unicode.org/
https://www.m3aawg.org/
https://www.w3.org/Consortium/Member/List
https://www.w3.org/People/
https://www.w3.org/standards/
https://www.w3.org/
https://www.icann.org/resources/pages/glossary-2014-02-03-en
https://tools.ietf.org/html/rfc3492

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 35

RFC 5890

Internationalized Domain Names for Applications (IDNA): Definitions and Document

Framework

This RFC describes the usage context and protocol for a revision of Internationalized Domain

Names for Applications (IDNA).

https://tools.ietf.org/html/rfc5890

RFC 5891 Internationalized Domain Names in Applications (IDNA) Protocol

This RFC specifies the protocol mechanism, called Internationalized Domain Names in

Applications (IDNA), for registering and looking up IDNs in a way that does not require

changes to the DNS itself.

https://tools.ietf.org/html/rfc5891

RFC 5892 The Unicode Points and Internationalized Domain Names for Applications (IDNA)

The RFC 5892 specifies rules for deciding whether a code point, considered in isolation or in

context, is a candidate for inclusion in an Internationalized Domain Name (IDN).

https://tools.ietf.org/html/rfc5892

RFC 5893 Right-to-left scripts for Internationalized Domain Names for Applications (IDNA)

This RFC provides a new Bidi rule for Internationalized Domain Names for Applications

(IDNA) labels, for the use of right-to-left scripts in Internationalized Domain Names.

https://tools.ietf.org/html/rfc5893

RFC 5894 Internationalized Domain Names for Applications (IDNA): Background, Explanation and

Rationale

This informational document provides an overview of a revised system to deal with newer

versions of Unicode and provides explanatory material for its components.

https://tools.ietf.org/html/rfc5894

RFC 5895 Mapping Characters for Internationalized Domain Names in Applications (IDNA) 2008

This RFC describes the actions that can be taken by an implementation between receiving

user input and passing permitted code points to the new IDNA protocol (2008). It describes

an operation that is to be applied to user input in order to prepare that user input for use in

an “on the network” protocol. It also includes a general implementation procedure for

mapping.

https://tools.ietf.org/html/rfc5895

EAI RFCs

RFC 6530 Overview and Framework for Internationalized Email

This standard introduces a series of specifications that define mechanisms and protocol

extensions needed to fully support internationalized email addresses. This document

describes how the various elements of email internationalization fit together and the

https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5895

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 36

relationships among the primary specifications associated with message transport, header

formats, and handling.

https://tools.ietf.org/html/rfc6530

RFC 6531 SMTP Extension for Internationalized Email

The document defines a Simple Mail Transfer Protocol extension so servers can advertise

the ability to accept and process internationalized email addresses and internationalized

email headers.

https://tools.ietf.org/html/rfc6531

RFC 6532 Internationalized Email Headers

This document specifies an enhancement to the Internet Message Format and to MIME that

allows use of Unicode in mail addresses and most header field content. This document

specifies an enhancement to the Internet Message Format (RFC 5322) and to MIME that

permits the direct use of UTF-8, rather than only ASCII, in header field values, including mail

addresses. A new media type, message/global, is defined for messages that use this

extended format. This specification also lifts the MIME restriction on having non-identity

content-transfer-encodings on any subtype of the message top-level type so that

message/global parts can be safely transmitted across existing mail infrastructure.

https://tools.ietf.org/html/rfc6532

RFC 6533 Internationalized Delivery Status and Disposition Notifications

This specification adds a new address type for international email addresses so an original

recipient address with non-ASCII characters can be correctly preserved even after

downgrading. This also provides updated content return media types for delivery status

notifications and message disposition notifications to support use of the new address type.

https://tools.ietf.org/html/rfc6533

Key Standards
ISO 10646

(Unicode)

To provide a common technical basis for the processing of electronic information in

various languages, the International Organization for Standardization (ISO) has

developed an international coding standard called ISO 10646. The ISO 10646 provides

a unified standard for the coding of characters in all major languages in the world

including traditional and simplified Chinese characters. This large character set is called

the Universal Character Set (UCS). The same set of characters is defined by the Unicode

standard, which further defines additional character properties and other application

details of great interest to implementers.

Unicode is a character coding system designed by the Unicode Consortium to support

the interchange, processing and display of the written texts of all major languages in

the world. ISO 10646 and Unicode define several encoding forms of their common

repertoire: UTF-8, UCS-2, UTF-16, UCS-4 and UTF-32.

https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc6532
https://tools.ietf.org/html/rfc6533

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 37

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumb

er=63182

GB18030

(China)

GB 18030-2000 is a Chinese government standard that specifies an extended code page

for use in the Chinese market in addition to UTF-8. The internal processing code for the

character repertoire can and should be Unicode; however, the standard stipulates that

software providers must guarantee a successful round-trip between GB18030 and the

internal processing code. All products currently sold or to be sold in China must plan

the code page migration to support GB18030 without exception. GB18030 is a

“mandatory standard” and the Chinese government regulates the certification process

to reinforce GB18030 deployment.

http://icu-project.org/docs/papers/unicode-gb18030-faq.html

Unicode

Technical

Standard #46:

Unicode IDNA

Compatibility

Processing

This specification defines a mapping consistent with the normative requirements of the

IDNA 2008 protocol, and which is as compatible as possible with IDNA 2003. For client

software, this provides behavior that is the most consistent with user expectations

about the handling of domain names with existing data.

http://unicode.org/reports/tr46/

Online Resources
APIs Windows APIs

https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.

85%29.aspx

SharePoint APIs

https://msdn.microsoft.com/en-us/library/office/jj860569.aspx

Public Suffix List

https://publicsuffix.org/list/public_suffix_list.dat

ICANN Authoritative TLD list

http://data.iana.org/TLD/tlds-alpha-by-domain.txt

Android APIs

http://developer.android.com/guide/index.html

MAC IOS APIs

https://developer.apple.com/library/mac/navigation

.Net Framework

https://msdn.microsoft.com/en-us/library/system.text.encoding(v=vs.110).aspx

Unicode

Security

Unicode Security considerations

http://www.unicode.org/reports/tr36

Unicode security mechanisms

http://www.unicode.org/reports/tr39

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182
http://icu-project.org/docs/papers/unicode-gb18030-faq.html
http://unicode.org/reports/tr46/
https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.85%29.aspx
https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/office/jj860569.aspx
https://publicsuffix.org/list/public_suffix_list.dat
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://developer.android.com/guide/index.html
https://developer.apple.com/library/mac/navigation
https://msdn.microsoft.com/en-us/library/system.text.encoding(v=vs.110).aspx
http://www.unicode.org/reports/tr36
http://www.unicode.org/reports/tr39

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 38

Unicode

character

groupings

Unicode code planes

http://en.wikipedia.org/wiki/Mapping_of_Unicode_character_planes

 Overview of GB18030

http://en.wikipedia.org/wiki/GB_18030

Authoritative mapping table between BG18030-2000 and Unicode

http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-

2000.xml

Unicode normalization

https://en.wikipedia.org/wiki/Unicode_equivalence

Unicode

exploits

Section 3.1, “UTF-8 Exploits” in Unicode Technical Report #36

http://unicode.org/reports/tr36/#UTF-8_Exploit

M3AAWG Best Practices for Unicode Abuse Prevention

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-

02.pdf

M3AAWG Unicode Abuse Overview and Tutorial

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf

See also:

http://www.unicode.org

Miscellaneous URIs

http://tools.ietf.org/html/rfc3986

The Domain Name System: A Non-Technical Explanation – Why Universal Resolvability

Is Important

http://www.internic.net/faqs/authoritative-dns.html

ICANN glossary

https://www.icann.org/resources/pages/glossary-2014-02-03-en

http://en.wikipedia.org/wiki/Mapping_of_Unicode_character_planes
http://en.wikipedia.org/wiki/GB_18030
http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-2000.xml
http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-2000.xml
https://en.wikipedia.org/wiki/Unicode_equivalence
http://unicode.org/reports/tr36/#UTF-8_Exploit
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
http://www.unicode.org/
http://tools.ietf.org/html/rfc3986
http://www.internic.net/faqs/authoritative-dns.html
https://www.icann.org/resources/pages/glossary-2014-02-03-en

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 39

Acknowledgements
The authors gratefully acknowledge the following people for their contributions and collaboration on this

document:

Eleeza Agopian

Gwen Carlson

Edmon Chung

Samantha Dickinson

Don Hollander

Chantal Lebrument

Antonietta Mangiacotti

Richard Merdinger

Ram Mohan

David Morrison

Carolyn Nguyen

Michael D. Palage

Kurt Pritz

André Schappo

Zheng Song

Lars Steffen

Andrew Sullivan

Dennis Tan

Winnie Yu

 Introduction to Universal Acceptance (UASG 007)

Version 9 -2 February 2017 40

Version Changes
From version 8 to version 9

• Corrected suggested dot transformations Unicode points

• Removed one irrelevant link on authoritative sources

	Introduction
	A Brief History of Domain Name Internationalization
	The Need for Universal Acceptance

	Part 1: Baseline Concepts of Universal Acceptance
	Domain Name
	Domain Name System (DNS)
	Top Level Domains (TLDs)
	Generic Top Level Domains (gTLDs)
	Character Sets and Scripts
	ASCII and Unicode
	Internationalized Domain Names (IDNs) and Punycode
	Email
	Addresses and Email Address Internationalization (EAI)
	Dynamic Link Generation (Linkification)

	Part 2: Universal Acceptance in Action
	Five Criteria of Universal Acceptance
	User Scenarios
	Nonconformance to Universal Acceptance Practices

	Technical Requirements for UA Readiness
	High level Requirements
	Developer Considerations
	A Guiding Principle for Achieving Universal Acceptance: Postel’s Law
	Good Practices for Developing and Updating Software to Achieve UA-Readiness

	Authoritative Sources for Domain Names
	DNS Root Zone
	Public Suffix List

	Other Challenges
	General
	IDN-Style Email and Why It Is Not the Same as EAI
	Linkification and Its Challenges

	Part 3: Advanced Topics
	Complex Scripts
	Right to Left Languages and Unicode Conformance
	The Bidi Algorithm
	The Bidi Rule for Domain Names
	Joiners
	Homoglyph and Confusingly Similar Characters

	Normalization and Case Folding
	Normalization
	Case Folding

	Part 4: Glossary and Other Resources
	Glossary
	RFCs
	Key Standards
	Online Resources

	Acknowledgements
	Version Changes

