DNSSEC

Your Internet infrastructure needs better protection

Matthijs Mekking, ISC

Matthijs, ISC

- Working on DNS and DNSSEC for 18 years
 - NLnet Labs (research, dev)
 - OpenDNSSEC (dev)
 - Dyn (DNS provider)
 - ISC (dev BIND 9)
 - IETF (standards)

What is DNSSEC

- Digital signatures on RRsets
- Hierarchical PKI
 - End-to-end integrity
 - Origin authentication
- A set of IETF specifications
 - RFC 4033 4034 4035, and more
- Backwards compatible with DNS

Why DNSSEC

- Prevent cache poisoning
 - Data integrity and authentication
- Bootstrap other security systems
 - DANE: TLSA
 - IPSECKEY
 - SSHFP

What DNSSEC doesn't do

- Privacy/confidentiality
- DDoS protection
- Message security
- Access control

Not a silver bullet, but a building block for a more secure Internet infrastructure

How DNSSEC works

How DNSSEC works

Status of DNSSEC

History of DNSSEC

Deployment status

Signing:

- Root, 91% tld
- 3% Fortune 1000
- Validation:
 - -~20% (APNIC)
 - Includes Google, CloudFlare

.no	58%
.se	54%
.nl	53%
.ch	4%
.com	0.7%

Deployment challenges

- Perceived complexity of DNSSEC
 - Long standardization process
 - Early adopter DNSSEC errors highlighted
- Wide variety of many DNS systems
- Root DNSSEC key ownership
 - Trusted Community Representatives
- The incentive problem
 - "All work and no play makes Jack a dull boy"
 - The costs outweigh the benefit

DNSSEC Weaknesses

- RFC 3833 (2004)
 - Complex to implement
 - Increased work load
 - The last mile
 - Increased DNS response size
- Weak error signaling (SERVFAIL)

Arguments used against DNSSEC

- DNSSEC is complex
- It is computational heavy
- DNS poisoning risk is low
- Root key owners control the DNS
- The last mile is insecure
- There are better alternatives
- SERVFAIL: Bad error signaling
- DNSSEC means amplification attacks
- The costs outweigh the benefit

Debunking arguments against DNSSEC

It's not

DNSSEC Software

- Signing:
 - BIND 9, Knot DNS, PowerDNS,
 OpenDNSSEC (+appliances, closed)
- Validating:
 - BIND 9, Unbound, Knot Resolver,
 PowerDNS (+appliances, closed)

DNSSEC Software

- Push the button config, one page docs
- Many config options for corner cases
 - Soft validation
 - Negative trust anchors
- Auto resign, ZSK management
- Tools for making KSK rollover easier
 - Requires DS update in parent zone
 - Not required for normal operation
- Provide support contracts

More work load

The cost of validation

- More computational resources
- More DNS queries (DNSKEY, DS)
 - Up to 5x more queries with no cache
 - Up to 4x slower with no cache
 - Implementation dependent
- But...

The cost of validation

- Caching helps a lot
 - Equal number of queries and time

The threat is real

- Kaminsky attack
 - Made cache poisoning trivial
 - Source port randomization made it 65536 times harder
 - But that is just patch work

solution.

Elders of the Internet

TCRs

- Trusted Community Representatives:
 - Recognized members of the DNS technical community from various regions to perform key management
- Goal:
 - Improve confidence and acceptance in the DNSSEC security mechanism among the wider Internet community

Resolver to client

- Validation at the client
 - DNSSEC-Trigger
 - getdns API for applications
- Securing the transport
 - DNS over TLS (DoT), DNS over HTTPS (DoH)

Alternative solutions

Alternatives to DNSSEC

- Channel security mechanisms
 - DNSCurve
 - DNSCrypt
 - DNS over TLS (DoT)
 - DNS over HTTP (DoH)
 - Hop-by-hop authentication

Alternatives to DNSSEC

There is no real alternative for providing data integrity and origin authentication

SERVFAIL

DNS Extended Errors

•	4.1.5.	SERVFAIL Extended DNS Error Code 5 - DNSSEC	
•		Indeterminate	7
•	4.2. INF	O-CODEs for use with RESPONSE-CODE: SERVFAIL(2)	7
•	4.2.1.	SERVFAIL Extended DNS Error Code 1 - DNSSEC Bogus	7
•	4.2.2.	SERVFAIL Extended DNS Error Code 2 - Signature	
•		Expired	7
•	4.2.3.	SERVFAIL Extended DNS Error Code 3 - Signature Not	
•		Yet Valid	7
•	4.2.4.	SERVFAIL Extended DNS Error Code 4 - DNSKEY missing .	7
•	4.2.5.	SERVFAIL Extended DNS Error Code 5 - RRSIGs missing .	7
•	4.2.6.	SERVFAIL Extended DNS Error Code 6 - No Zone Key Bit	
•		Set	8
•	4.2.7.	SERVFAIL Extended DNS Error Code 7 - No	
•		Reachable Authority	8
•	4.2.8.	SERVFAIL Extended DNS Error Code 8 - NSEC Missing	8
•	4.2.9.	SERVFAIL Extended DNS Error Code 9 - Cached Error	8
•	4.2.10.	SERVFAIL Extended DNS Error Code 10 - Not Ready	8

Amplification

- This is also possible without DNSSEC
- Mitigations:
 - Refuse ANY
 - Enable minimal responses
 - DNSSEC Combined Signing Key

Amplification

- RSA 1024 bit: ~132 bytes DNSKEY
- RSA 2048 bit: ~260 bytes DNSKEY
- ECDSA:
 - ECC P-256 bit: ~100 bytes DNSKEY
 - Equally strong to RSA 3100 bit
 - Towards 512 bit DNSSEC responses
 - Much faster signing
 - But slower validation

To conclude

Costs versus benefit

- DNSSEC has become a lot better
 - More mature software
 - Protocol improvements
- Rise of DNS attacks
- Financial incentive programs

DNSSEC Call for Adoption

- Protect your Internet infrastructure
 - Prevent cache poisoning
 - Data integrity, origin authentication
- Bootstrap other security systems
 - TLSA, SSHFP, IPSECKEY, ...
- Easy deployment
 - Software matured, push the button
- Some protocol weaknesses exist
 - But improvements are on the way!

Links

Information and sources

- IETF: https://www.ietf.org
 - DNSSEC RFCs: https://tools.ietf.org/html/rfc4033 https://tools.ietf.org/html/rfc4034 https://tools.ietf.org/html/rfc4035 https://tools.ietf.org/html/rfc5155
 - Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC https://tools.ietf.org/html/rfc6605
 - Extended DNS Errors: https://datatracker.ietf.org/doc/draft-ietf-dnsop-extended-error/
 - DNS over TLS: https://tools.ietf.org/html/rfc7858
 - DNS over HTTPS: https://tools.ietf.org/html/rfc8484
- IANA:
 - Trusted Community Representatives: https://www.iana.org/dnssec/tcrs
- Deploy360: https://www.internetsociety.org/deploy360/dnssec/ https://www.dnssec-deployment.org/
- APNIC Measurements: https://labs.apnic.net/
- OpenINTEL: https://openintel.nl/
- The Cost of DNSSEC: https://www.potaroo.net/ispcol/2014-08/dnsseccost.pdf

Software

- ISC (BIND 9): https://www.isc.org/
- NLnet Labs (Unbound, OpenDNSSEC, DNSSEC-Trigger): https://nlnetlabs.nl/ https://www.opendnssec.org/
- getdns: https://getdnsapi.net/
- CZ.NIC (Knot DNS, Knot Resolver): https://www.knot-dns.cz/ https://www.knot-resolver.cz/
- Open-Xchange (PowerDNS): https://www.powerdns.com/

News

- ICANN Calls for Full DNSSEC Deployment, Promotes Community Collaboration to Protect the Internet
 - https://www.icann.org/news/announcement-2019-02-22-en
- DNSSEC Usage in Switzerland is on the rise after widespread attacks on the Domain Name System
 - https://securityblog.switch.ch/2019/04/02/dnssecinswitzerland2019/

DNSSEC Panel

- Raise your questions and concerns!
- How can we make things easier?

