

Compliance in business processes by design: examples from insurance, aviation, carsharing

Unsere **Aktivitäten**

- **Education:** Studenten und Manager • in Trainings und Workshops
- Research: gemeinsame Forschungsprojekte und Studien
- Prototyping: Implementierung von Prototypen, Proof-of-Concept
- Community: regelmäßige Veranstaltung, Expertenrunden
- Startups: Unterstützung von • Startups, Netzwerk

Fokus auf Branchen

- Banken und Versicherungen •
- Industrie 4.0 •
- Energie •
- Mobilität •
- Öffentlicher Sektor

Das **Team**

- Prof. Dr. Philipp Sandner E-Mail: p.sandner@fs.de
- Prof. Dr. Peter Rossbach
- Prof. Dr. Daniel Beimborn
- Vahe Andonians
- +4 others

Past and current **projects**

- · 6th Central Banking Workshop: gemeinsam mit der Deutschen Bundesbank organisiert
- Implementierungsprojekt: Blockchain-basierte Policierung von situativen Versicherungen
- Workshop für Top Manager: Auswirkungen von dezentralen Blockchain-basierten Energiemärkten auf das Geschäftsmodell von Energieversorgern
- Studie: Potenzial von Blockchain-basierten Anwendungen in Entwicklungsländern

So far: transparency of transactions provides possibilities for regulators and compliance challenges

Regulation by monitoring of transparent transactions

Compliance

So far: transparency of transactions provides possibilities for regulators and compliance challenges

Regulation by monitoring of transparent transactions

Compliance

New: differentiating between asset fungibility and usage fungibility allows for a "built-in regulation" or, in other words, for a "compliance by design"

Asset fungibility through technical features allowing full fungibility of assets

So far: transparency of transactions provides possibilities for regulators and compliance challenges

Regulation by monitoring of transparent transactions

Compliance

New: differentiating between asset fungibility and usage fungibility allows for a "built-in regulation" or, in other words, for a "compliance by design"

Compliance

Definition

- Compliance means committing to and matching the legal rules, policies and laws.
- Companies therefore have set up **procedures and compliance controls** which should ensure that regulatory requirements are met.
- With regard to this presentation, we also include committing to and matching **business rules** in the term compliance.

Important features

- Blockchain unites several **features which can support companies** in their reporting processes and legal authorities in their monitoring capabilities.
 - Through its record-keeping mechanism, the blockchain can create transparency and improve monitoring practices.
 - The blockchain is **immutable** by its design. Once a record is saved, it can not be changed which makes it a reliable source for regulatory institutions.
 - As a distributed network, the blockchain allows the implementation of shared databases for companies and **regulators**.
- Operational and compliance efficiency can be increased through the **bundling** of resources.
 - E.g. shared databases about customers' data might improve identification processes

Source: http://www.corporatecomplianceinsights.com/blockchain-regulatory-compliance/

How companies and regulators benefit

Quality

- Read-only access could be granted to regulators
- Life-monitoring helps regulators to intervene earlier and to have a better overview about recent events
- Accuracy and confidence is improved

Cost and speed

- Regulators and companies can save costs due to less human controls and intermediary systems
- Automated processes can be established (smart contracts) in order to reduce regulatory reports

Potential

Know your customer (KYC)

- Know your customer checks could be made faster and more efficient
- Updates about clients could be distributed between companies
- Transactions between clients could only be allowed if adequate KYC evidence and credentials exist

Anti-Money Laundering (AML)

- Especially Anti-Money Laundering programs are difficult to implement and contribute a major stake in compliance
- With the blockchain, past transactions can be checked and investigated which helps to identify illegal activities

Source: https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/innovation/ch-en-innovation-deloitte-blockchain-app-in-banking.pdf https://www.finextra.com/blogposting/13186/can-blockchain-prevent-money-laundering

Fungibility

Definition

- Two goods are characterized as **fungible when they belong to the same asset class** and are perfectly interchangeable meaning that they bear the same value.
- A common example are **currencies**.
- One **20€ bill** is worth exactly as much as another 20€ bill or two 10€ bills and therefore is perfectly interchangeable.

Perspective

• Fungibility from the **owner of assets**

Economic meaning

- Fungibility is relevant to economic activities due to several reasons:
 - Trust in acceptance of assets
 - **Common value** perceptions
 - **Simplify** the trade process
 - Reduce transaction costs

Source: http://bitscan.com/articles/why-you-should-care-about-fungibility

Currency is fungible

Blockchain design

- For validation purposes transactions are linked to previous transactions which are linked to previous transaction.
- Hence, a history of all transactions and hence the history of all items is publicly known.

Problems

- Due to the transaction history, one can trace the items and classify them as "clean" or "dirty".
- Clean items are not associated with any illegal activities whereas dirty items are.
 - Dirty items are regarded as less valuable
 - Some participants have technical infrastructure to check if items are associated with illegal activities while other participants do not have the capabilities
 - Participants with this ability have superior information about the items and can abuse their knowledge which challenges trust in the network
 - Participants can use third parties in order to check if items are dirty or clean
 - If third parties have to be used, transactions again rely on third parties to establish trust which eliminates one of the biggest blockchain advantages

Source: http://bitscan.com/articles/why-you-should-care-about-fungibility ; http://www.coindesk.com/ensuring-bitcoin-fungibility-in-2017-and-beyond/

Cooperation of different services

- Through the cooperation of blockchain related services (e.g. payment processors, exchanges, wallets services etc.) and the sharing/aggregation of their data (including transaction data), transactions and their purpose can be identified
- Mining companies collaborate and perform a taint analysis
- A taint analysis shows you if a item or coin was used for illegal activities or if it was stolen

Establish fungibility

- In order to re-establish fungibility on the blockchain several solutions are possible:
 - Restore anonymity and privacy
 - Regulatory environment
- Theoretical solutions are ring signatures which reduce the traceability (trade-off between fungibility and scalability) or the Schnorr algorithm (creates a single signature to represent many)

Source: https://prezi.com/cjcjkeuwoyrg/fungibility-on-the-blockchain/ https://decentralize.today/bitcoin-fungibility-the-most-important-feature-of-bitcoin-4b87a381f21a#.yk741w6vc

Current solution attempts for crypto currencies

EQUIS © Prof. Dr. Philipp Sandner

Compliance vs. fungibility

Compliance vs. fungibility

There are use cases where assets need to be fully fungible

Micro payments

Other use cases need assets that are only partly fungible

Supply chain networks

Currency is fungible

Can stolen money be identified?

a upatronen

Berlin, 10. Februar

ATMs mark stolen money with ink

Reconciling fungibility and compliance

Smart Contracts

German Excellence. Global Relevance.

- Idea of smart contract back to 1994 (Nick Szabo)
- Self-executing agreement that •
 - Securely hold value
 - Verifies whether the conditions are met
 - Automatically release value
- "Oracle" •
 - Online service providers broadcasting data _
 - Can be used as input for verification _
 - Connection between real world and blockchain
- **Distributed Autonomous Organizations** •
 - Complex and/or combined smart contracts _

- Example: Bitcoin

send 70€ from A to B

1 Standard transaction

- Example: Bitcoin

send 70€ from A to B

2 Compliance layer through smart contracts and "permission oracles"

- Execute payment only if condition holds
- Condition concerns whether a planned transaction is compliant

if (compliance rule = true) then (send 70 \in from A to B)

- "Permission oracles"
 - Decides about compliance of a planned transaction
 - Can be "on-chain"

Permission oracles could be reflected in a simple matrix which itself could be stored on a blockchain

German Excellence. Global Relevance.

if (compliance rule = true) then (send [amount] from [sender] to [recipient])

					•					
		A ₂	B ₂	C ₂	D ₂	E ₂	F_2	G ₂	H ₂	I_2
	A ₁	I		1						
	B ₁		-	1						
	C ₁			-						
Condor	D ₁			1	-					
Sender	E ₁			1		-				
	F ₁	1	1	1	1	1	-	1	1	1
	G ₁			1				-		
	H ₁			1					-	
	I ₁			1						-

Recipient

Blockchain architecture: all wallet owners can be equal

German Excellence. Global Relevance.

Blockchain architecture: wallet owners can have different permission settings based on sending and receiving assets

German Excellence. Global Relevance.

Blockchain architecture: wallet owners can have different permission settings based on sending and receiving assets

Frankfurt School of Finance & Management German Excellence, Global Relevance,

if (compliance rule = true) then (send [amount] from [sender] to [recipient])

Recipient **E**₂ B_2 \mathbf{C}_2 F_2 G_2 A_2 D_2 H_2 **1**₂ 1 1 A_1 B₁ 1 1 -1 C_1 -D₁ 1 1 1 1 1 1 1 1 Sender E₁ 1 1 -F₁ 1 1 1 1 1 1 1 1 -G₁ 1 1 -H₁ 1 1 -1 I₁ -

Blockchain architecture: wallet owners can have different permission settings based on subordinate networks

German Excellence. Global Relevance.

Blockchain architecture: wallet owners can have different permission settings based on subordinate networks

Frankfurt School

German Excellence. Global Relevance.

if (compliance rule = true) then (send [amount] from [sender] to [recipient])

	Technical features		"Built-in trust"		Transaction of value
• • • • • • • • • • • • • • • • • • • •	Network Ledger Blocks Nodes Wallets Transactions Miners	•	Immutable history of transactions Redundant storage of ledger Robustness of network	• • • •	Money Stocks Identities Reputation Car rentals Energy Computing power

Source: built on Quantoz (2016)

Technical features	"Built-in trust"	Compliant transaction of value
 Network Ledger Blocks Nodes Wallets Transactions Miners Smart contracts Permission oracles 	 Immutable history of transactions Redundant storage of ledger Robustness of network "Built-in regulation" By companies By organizations By regulators 	 Money Stocks Identities Reputation Car rentals Energy Computing power

Source: built on Quantoz (2016)

Summary

- Ideal to have full "asset fungibility" for the underlying digital assets
 - Technical features
- Have configurable (sometimes temporary) "usage fungibility" for different use cases
 - Smart contracts
 - "Permission oracles"
 - Permission rights
 - Permission matrices
- Result
 - "Built-in regulation" in addition to "built-in trust"
 - "Compliance by design"
 - "Regulation by design"

Frankfurt School of Finance & Management German Excellence. Global Relevance.

So far: transparency of transactions provides possibilities for regulators and compliance challenges

Transparency of blockchain transactions provided by limited fungibility

Regulation by monitoring of transparent transactions

Compliance

New: differentiating between asset fungibility and usage fungibility allows for a "built-in regulation" or, in other words, for a "compliance by design"

